
ZeTeM

Fachbereich 3
Mathematik und
Informatik

Regularization Theory for

Special Neural Network Architectures

Applied on Inverse Problems

PhD thesis

Clemens Arndt

Date of Colloquium: 9 January 2025

Reviewers:

Prof. Dr. Dr. h.c. Peter Maaß,

Professor Simon Arridge





Abstract

This thesis is about deep learning methods for solving ill-posed inverse problems which

make use of special neural network architectures in order to obtain theoretical guarantees

about regularization properties. In the first part, we provide an overview of the classical

theory of linear inverse problems and various deep learning approaches for solving them.

We discuss which theoretical properties are particularly desirable for reconstruction meth-

ods (as existence, uniqueness, stability, and convergence of solutions) and which technical

conditions are required for different methods to achieve them. Besides, we describe dif-

ferent ways for neural networks to gain prior knowledge about the solutions of inverse

problems, e.g., via end-to-end learning or regularization by architecture.

The second part of the thesis, consisting of six publications, is about specific methods

which combine rigorous theoretical regularization guarantees with high practical recon-

struction performance. First, we prove regularization properties for a deep image prior

approach with a LISTA architecture. This is done by exploiting the structural similarity

between the network architecture and classical iterative reconstruction methods, result-

ing in the analytic deep prior formulation. For analytic deep prior, we then establish

an equivalence to variational regularization and thus obtain the desired properties. In

addition, we report on the application of different deep learning based methods in two

international challenges about solving real-world inverse problems. The results particu-

larly demonstrate the importance of high-quality training data so that the methods can

learn extensive prior knowledge about the solutions. End-to-end learning emerged as

the most successful strategy in both challenges. Furthermore, we introduce a new deep

learning based reconstruction method using invertible residual networks (iResNets). The

inherent properties of this type of architecture allow for proving theoretical regulariza-

tion guarantees as well as analyzing what exactly the networks learn in different training

strategies about the training data and the forward operator. Moreover, we show the

practical performance of iResNets for solving inverse problems in numerical experiments.



Zusammenfassung

Diese Dissertation behandelt Deep Learning Methoden zum Lösen schlecht gestellter

inverser Probleme unter Verwendung spezieller Netzwerk-Architekturen, um theoretische

Garantien bezüglich der Regularisierungseigenschaften zu erhalten. Der erste Teil bietet

eine Übersicht über die klassische Theorie linearer inverser Probleme und verschiedene

Deep Learning Methoden zum Lösen dieser. Es wird erörtert, welche theoretischen Ei-

genschaften für Rekonstruktionsverfahren besonders wünschenswert sind (wie Existenz,

Eindeutigkeit, Stabilität und Konvergenz von Lösungen) und welche technischen Bedin-

gungen für die verschiedenen Methoden notwendig sind, um diese zu erreichen. Außerdem

werden verschiedene Möglichkeiten beschrieben, wie neuronale Netze wichtiges Vorwissen

über die Lösungen inverser Probleme erwerben können, zum Beispiel mittels
”
end-to-end

learning“ oder
”
regularization by architecture“.

Der zweite Teil der Arbeit, bestehend aus sechs Publikationen, behandelt konkrete

Methoden, die strikte theoretische Regularisierungsgarantien mit hoher Effektivität in

der praktischen Anwendung vereinen. Zunächst werden Regularisierungseigenschaften für

einen
”
deep image prior“ Ansatz mit

”
LISTA“-Architektur nachgewiesen. Dafür wird die

strukturelle Ähnlichkeit zwischen der Netzwerk-Architektur und klassischen iterativen

Rekonstruktionsverfahren ausgenutzt und man erhält die
”
analytic deep prior“ Formulie-

rung. Für analytic deep prior wird eine Äquivalenz zu variationellen Regularisierungsver-

fahren hergeleitet, um auf diese Weise die gewünschten Eigenschaften zu erhalten. Des

Weiteren wird vom Einsatz verschiedener Deep Learning Methoden in zwei internatio-

nalen Wettbewerben zum Lösen realer inverse Probleme berichtet. Die Resultate zeigen

insbesondere die Bedeutung von Trainingsdaten mit hoher Qualität für die Methoden,

um Vorwissen über die Lösungen zu lernen. In beiden Wettbewerben hat sich
”
end-to-

end learning“ als die erfolgreichste Strategie herausgestellt. Darüber hinaus führen wir

eine neue auf invertierbaren
”
residual networks“ (iResNets) basierende Rekonstruktions-

methode ein. Die intrinsischen Eigenschaften dieser Architektur erlauben zum einen den

Nachweis von theoretischen Regularisierungsgarantien. Zum anderen ist es möglich zu un-

tersuchen, was die Netze bei verschiedenen Trainingsstrategien über die Trainingsdaten

und den Vorwärtsoperator lernen. Außerdem wird die praktische Effektivität von iResNets

in numerischen Experimenten gezeigt.
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Chapter 1

Introduction

My interest in inverse problems, the task of determining the cause for a certain obser-

vation, was sparked by the very specific challenges of this field. Due to their inherent

properties, solving these problems is particularly difficult in various ways. More precisely,

inverse problems may have multiple potential solutions (as there might exist different

causes for the same observation) such that determining the correct one is only possible

if suitable additional information about the solution is considered. One example from

everyday life is the restoration of blurred images where the subject is no longer recog-

nizable. We might need to know that there is, e.g., a human face on it in order to be

able to reconstruct a clean image. In addition, the process of recovering the clean image

might be unstable, i.e., small deviations in the blurred image may lead to big deviations

in the reconstruction. Because of these challenges, inverse problems are often referred to

as ill-posed in mathematics.

Further applications where inverse problems occur are, e.g., medical imaging and non-

destructive testing. Computed tomography (CT) makes it possible to reconstruct the

inside of a human body by sending radiation through it and measuring the dose on the

other side. Similar procedures also exist for technical components in order to find internal

defects without having to dismantle the component. These applications are often safety-

critical such that reconstruction errors must be avoided as far as possible. Therefore, a

strong theoretical foundation is required to guarantee a predictable behavior of the re-

construction algorithms. For this purpose, the mathematical theory of regularization has

been developed and has been the source of a wide range of classical (handcrafted and

model-based) reconstruction methods.

However, the currently best-performing reconstruction methods for inverse problems

in most applications are data-driven and based on deep learning. For these approaches,

one has to collect (a lot of) data related to the problem in advance, e.g., samples of

solutions. Then, a neural network is employed to extract useful information from this

data (e.g., that there is a human face on the blurred image) in order to “learn” how the

inverse problem can be solved. The success of deep learning in practice has often been

demonstrated, for example in the Helsinki Deblur Challenge 2021 [10] and the Helsinki

Tomography Challenge 2022 [9].
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Despite this high performance, data-driven methods sometimes show unpredictable

behavior. Guaranteeing certain properties of deep learning based reconstruction schemes,

e.g., stability, is usually far more challenging than for classical regularization methods, and

improving the theoretical understanding of deep learning methods is still an active field of

research. Two promising approaches in this direction are the combination of classical al-

gorithms with data-driven methods and the usage of special neural network architectures

which provide possibilities for analytical investigations. In this thesis, we particularly

investigate the analytic deep prior [7] approach and invertible neural networks (iResNets)

[8, 11, 12]. Analytic deep prior is a variant of the deep image prior approach [64], where the

neural network is replaced by a classical reconstruction method, which opens the way for

applying the classical regularization theory. The architecture of iResNets is designed in a

way that allows for a stable inversion and therefore provides a provably stable reconstruc-

tion scheme for inverse problems. However, the analytical benefits of these approaches

are based on certain restrictions on the network architecture. Thus, the crucial challenge

is to find an appropriate compromise between high performance in practical applications

and strong theoretical guarantees.

1.1 Structure of the Thesis

Part I of the thesis starts with an overview of the classical theory for linear inverse

problems in Chapter 2. We begin with the characteristic challenges which result from

ill-posedness. Thereafter, the concept of regularization is introduced. A special focus is

laid on the theoretical guarantees (as existence, uniqueness, stability, and convergence of

solutions) that regularization schemes can provide. Spectral and variational regularization

methods are explained in more detail. The chapter concludes with a Bayesian view

on variational regularization and iterative methods for solving variational minimization

problems.

Chapter 3 describes how deep learning methods can be used for solving inverse prob-

lems. After a brief introduction to neural networks, we discuss which theoretical guaran-

tees for learning-based algorithms would be desirable in the context of inverse problems.

It follows an overview of common deep learning approaches for inverse problems. There

we highlight again the theoretical guarantees which can be obtained via the different

strategies.

We then move on to special network architectures with provable regularization prop-

erties, the main topic of this thesis, in Chapter 4. There, we provide the motivation for

the research of this dissertation, focussing on both theoretical and practical aspects. In

particular, we summarize the results and the connections of the six research papers which

constitute Part II of the thesis.
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1.2 Included Research Papers and Contributions

This cumulative thesis is a synthesis of the following six papers that emerged during my

time as a PhD student. For each of the papers, my particular contributions to the research

are specified below. Throughout the thesis, citations of my own work are indicated in

red, while all other literature references are marked in blue.

� Regularization theory of the analytic deep prior approach by C. Arndt,

published in Inverse Problems [7].

The paper is based on the results of my master’s thesis. The theoretical parts

are completely revised with enhanced proofs of the equivalence result (Lemma 3.1

and 3.2), a new result about the relation between the regularization parameters of

analytic deep prior (ADP) and Tikhonov (Lemma 3.6), clarified relations between

ADP and Ivanov methods (Remark 3.7 and 3.9), and a generalized framework for the

regularization theory of ADP-β (Section 3.4). The numerics section is completely

new.

� Invertible residual networks in the context of regularization theory for

linear inverse problems by C. Arndt, A. Denker, S. Dittmer, N. Heilenkötter,

M. Iske, T. Kluth, P. Maass, and J. Nickel, published in Inverse Problems [8].

Most of the ideas for the content of the paper were developed together in group

meetings. I made major contributions to all theoretical aspects of the paper (Sec-

tion 2, 3, and 4). For a large majority of the results, I did a substantial amount of

work. In particular, I did the proofs of Lemma 2.1, Lemma 3.2, Lemma 4.1, and

Lemma 4.4 and made major contributions to the proofs of Theorem 3.1, Lemma 3.3,

Lemma 4.2, Lemma 4.3, and Lemma 4.5. Besides, I did the graphical illustrations

of the filter functions in Section 4 and the computation of the filter function (4.22)

(Appendix A.5).

� Bayesian view on the training of invertible residual networks for solv-

ing linear inverse problems by C. Arndt, S. Dittmer, N. Heilenkötter, M. Iske,

T. Kluth, and J. Nickel, published in Inverse Problems [11].

I made major contributions and did substantial work for a majority of the theo-

retical aspects of the paper (Section 2, 3, and 4). In particular, I developed (and

proved) the main results about the expectation values of approximation training

(Theorem 3.1) and reconstruction training (Lemma 4.1 and Lemma 4.2). Further-

more, I did the proofs of Lemma 2.1 and Lemma 3.1. Besides, I arranged the major

part of the problem setting (Section 2) and made major contributions to the ideas

and interpretations of some of the numerical experiments (Figure 5 and Figure 9).

� Invertible ResNets for Inverse Imaging Problems: Competitive Perfor-

mance with Provable Regularization Properties by C. Arndt, and J. Nickel,

submitted for publication in SIAM Journal on Imaging Sciences [12].
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Judith Nickel and I contributed equally to the paper, the basic ideas were devel-

oped together. I am particularly responsible for the content of Section 3, Section 4.1,

and Section 4.3.1. Regarding the numerical experiments, we contributed equally to

the procedure of improving the iResNet architecture by testing different ideas and

variants. I particularly did the training of the small iResNet architecture, the im-

plementation of the Lipschitz constraint and the deep equilibrium model, and the

experiments about local ill-posedness with directional derivatives (Section 4.3.1).

Besides, the basic evaluations and investigations of the networks (Section 4.2 and

the first part of Section 4.3) were done together.

� In focus - hybrid deep learning approaches to the HDC2021 challenge by

C. Arndt, A. Denker, J. Nickel, J. Leuschner, M. Schmidt, and G. Rigaud, published

in Inverse Problems and Imaging [10].

The main work was due to Alexander Denker. Judith Nickel and I contributed

equally to two of our four reconstruction approaches, the “Baseline U-Net” (Sec-

tion 4.1) and the “Educated Deep Image Prior” (Section 4.2) and the corresponding

numerical results in Section 5.

� Modelbased deep learning approaches to the Helsinki Tomography Chal-

lenge 2022 by C. Arndt, A. Denker, S. Dittmer, J. Leuschner, J. Nickel, and

M. Schmidt, published in Applied Mathematics for Modern Challenges [9].

The main work was due to Alexander Denker. I implemented one of the data gener-

ation methods (the third one of Section 2.2) and the initial classical reconstruction

for the “edge inpainting” method. Further, Judith Nickel and I contributed equally

to the inpainting U-Net and the segmentation U-Net of this method (Section 3.2

and corresponding numerical results in Section 4).
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Chapter 2

Classical Theory of Linear Inverse

Problems

Both in science and in everyday life, we observe the principle of causes and effects. Com-

puting the effect that is induced by a certain cause is often called the direct problem. In

this thesis, we are particularly interested in situations where the process which connects

causes and effects is known to a degree that enables us to solve the direct problem mathe-

matically. However, our focus is on the opposite problem, which is inverse to the causality.

That is why the task of determining the cause of a certain effect is called inverse problem.

There are two phenomena which are particularly characteristic for inverse problems.

First, we consider the fact that effects which occur in the real world must be measured,

which is rarely a totally exact procedure. Thus, the measurement data is assumed to

be corrupted by a certain amount of noise. Second, two completely different causes can

sometimes lead to very similar effects. This will be discussed in detail in the next section.

To tackle inverse problems mathematically, we model the measurement process in a

functional analytical setting. The causes and effects are represented as elements x and y

from Hilbert spaces1 X and Y , respectively. Between causes and effects, we assume the

linear dependence

Ax = y, (2.0.1)

with A ∈ L(X, Y ) being called the forward operator. While the forward operators of

general inverse problems might be nonlinear, there exist a lot of applications (e.g., in

imaging and image processing) where the linearity assumption is reasonable and allows

for a stronger theory. The inverse problem consists in determining an unknown cause

x† ∈ X (called ground truth) from the operator equation (2.0.1) for given y and A.

However, we consider the case that there is no access to clean measurements y† = Ax†

but only to noisy data yδ ∈ Y with ∥yδ − y†∥ ⩽ δ for a certain noise level δ > 0. Thus, we

do not expect to perfectly recover x† but are looking for an approximate solution instead.

1There also exists a more general (but weaker) theory with Banach spaces, e.g., [90].
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2.1 The Special Difficulties of Inverse Problems

A “hard” mathematical problem is often associated with the need for complicated al-

gorithms or extensive computations. But independent on the effort which is required

for solving a problem, there is the fundamental question of whether expedient univer-

sal solution algorithms could exist at all. This question is particularly crucial in the

context of inverse problems. To distinguish between so-called well-posed and ill-posed

problems, the following definition has been established and is used by the majority of

works [85, 84, 56, 44, 90, 60].

Definition 2.1.1 (well-posedness by Hadamard). An inverse problem Ax = y is called

well-posed in the sense of Hadamard if, for all y ∈ Y ,

� there exists a solution x ∈ X,

� the solution x is uniquely determined,

� the solution x depends continuously on y.

If one of these conditions is violated, the problem is called ill-posed.

When considering this definition in the context of the setting introduced at the begin-

ning of this chapter, we observe that inverse problems are likely to violate any of the three

conditions. Due to the noise on yδ, which might not be contained in the range R(A) of

the forward operator, the existence of a solution may become unclear. Besides, A might

have a non-trivial nullspace N (A) such that solutions are not unique. However, the third

condition is actually the most critical, which will become clear after explaining how the

first two issues can be overcome.

For yδ ∈ R(A)⊕R(A)⊥ (which is at least a dense subspace of Y ) one can project the

data onto R(A). The inverse problem with the projected data is then equivalent to the

minimizing problem minx∈X ∥Ax−yδ∥2 and also equivalent to solving the normal equation

A∗Ax = A∗yδ [85, Satz 2.1.1]. We thus look for a solution x which is most compatible

with the data yδ.

Addressing the non-uniqueness, we can choose a certain element from the set of all

solutions. In a Hilbert space, the most common choice is the minimum-norm solution

argmin
x∈X

∥x∥2 s.t. A∗Ax = A∗y, (2.1.1)

which is unique due to the strict convexity of the norm. The mapping of y ∈ R(A) ⊕
R(A)⊥ to the minimum-norm solution in X is called the Moore-Penrose inverse of A [85,

Definition 2.1.5] and denoted by A†.

The third condition of Definition 2.1.1 is called stability. A lack of stability is critical

due to the presence of noise in the data yδ. If A† is discontinuous, A†yδ and A†y† might

be totally different from each other, even in the case of a very small noise level δ. The

solution A†yδ would be totally unfeasible in this case.
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Whether A† is continuous or not depends on the forward operator A and its range. By

[85, Satz 2.1.8], [60, Theorem 1.5.7], the Moore-Penrose inverse is continuous if and only

if R(A) is closed. Additionally, in this case, R(A)⊕R(A)⊥ = Y holds, thus, A† is defined

on the whole data space. All issues are therefore reduced to the question of whether R(A)

is closed. This leads to the following alternative definition of well-posedness [85, 90, 56].

Definition 2.1.2 (well-posedness by Nashed). An inverse problem Ax = y is called well-

posed in the sense of Nashed if the range R(A) ⊂ Y of the forward operator is closed.

Otherwise, the problem is called ill-posed.

This definition provides an explicit criterion for whether a given inverse problem is

ill-posed and the Moore-Penrose inverse is inappropriate due to instability. For a sta-

ble solution of the inverse problem, we then need a different reconstruction algorithm

T : Y → X which is continuous. However, in addition to stability, we also require T to

produce low reconstruction errors. Unfortunately, the dilemma with ill-posed problems

is that a reconstruction algorithm cannot be arbitrarily accurate and stable at the same

time, even in the absence of noise. As the following lemma shows, there always exist two

different ground truth elements x†0, x
†
1 ∈ N (A)⊥ ⊂ X such that T produces significant

reconstruction errors for at least one of them.

Lemma 2.1.3. Let T : Y → X be a continuous reconstruction algorithm for an ill-posed

(Nashed) inverse problem Ax = y. Then, for arbitrary x†0 ∈ N (A)⊥ and C, ε > 0 there

exists x†1 ∈ N (A)⊥ such that

∥x†1 − x†0∥ = C ∧ ∥T (Ax†1)− x†1∥+ ∥T (Ax†0)− x†0∥ ⩾ C − ε. (2.1.2)

Proof. Since T is continuous, for any ε > 0 there exists δ > 0 such that

∀y ∈ Bδ(Ax
†
0) : ∥T (Ax†0)− T (y)∥ ⩽ ε. (2.1.3)

And since the problem is ill-posed, for any C > 0 there exists x†1 ∈ N (A)⊥ such that

∥x†1 − x†0∥ = C ∧ ∥Ax†1 − Ax†2∥ < δ, (2.1.4)

otherwise, the Moore-Penrose inverse A† would be continuous. It follows

C = ∥x†1 − x†0∥
⩽ ∥x†1 − T (Ax†1)∥+ ∥T (Ax†1)− T (Ax†0)∥+ ∥T (Ax†0)− x†0∥
⩽ ∥x†1 − T (Ax†1)∥+ ε+ ∥T (Ax†0)− x†0∥.

(2.1.5)

Finally, we only have to subtract ε.

Ill-posed problems in the sense of Nashed only exist in infinite dimensional spaces,

because in finite dimensions, the range of continuous mappings is always closed [90, Re-

mark 3.6]. This means, that in finite dimensions, the Moore-Penrose inverse is well-defined
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and continuous on the whole space Y . In other words, a stable inversion of a finite di-

mensional A is theoretically always possible. So, one could think that all challenges can

be overcome by discretizing the inverse problem for the computational solution. But

the discretization of ill-posed operator equations typically leads to ill-conditioned linear

systems.

Ill-conditioned problems are characterized by a Moore-Penrose inverse whose operator

norm ∥A†∥ is finite but still very large. This becomes apparent when the continuity of A†

is used to estimate a reconstruction error

∥A†yδ − x†∥ ⩽ ∥A†∥·∥yδ − y†∥ ⩽ ∥A†∥·δ. (2.1.6)

Due to limited numerical precision or limited measuring accuracy in reality, δ cannot be

forced to become arbitrarily small in general. Thus, from a practical point of view, A†

might behave almost like a discontinuous operator if ∥A†∥ is too large. It therefore seems

as if the solution x does not depend continuously on y, as required in the well-posedness

definition of Hadamard. Accordingly, it is reasonable to treat ill-conditioned problems like

ill-posed problems. Using the Moore-Penrose inverse for reconstruction is not sufficient

then. Instead, regularization methods are necessary.

2.2 The Idea of Regularization

Summarizing the results of the last section, ill-posedness implies that the data yδ does

not provide enough information to determine an appropriate reconstruction of the ground

truth x†. Accordingly, additional information about x† is needed. Such information is

also called prior knowledge about the ground truth and it includes specific properties a

potential solution is expected to fulfill. This is typically very application-specific and

ranges from simple conditions to highly abstract features.

The fundamental idea of regularization is to use prior knowledge to transform the ill-

posed inverse problem into a well-posed auxiliary problem, which is to be solved instead.

How this is done precisely is again highly application-specific. This is also the reason why

there is such a wide variety of reconstruction approaches (Section 2.3, 2.4 and 3.3).

According to Hadamard’s definition 2.1.1, the regularized problem should guarantee

existence, uniqueness, and stability of solutions. In addition, we want those solutions to

be good approximations to the actual ground truth. However, due to the noise on the

data yδ, a perfect accordance cannot be expected. Instead, we demand the regularized

solutions to converge to the ground truth if the noise level δ vanishes. This motivates

the mathematical definition of a regularization scheme [85, Definition 3.1.1], [44, Defini-

tion 3.1], [90, Definition 3.20], [84, Definition 4.1], [56, Definition 4.1].

Definition 2.2.1 (convergent regularization scheme). Let Tα : Y → X be a family of

continuous operators and α̂ : R>0 × Y → R>0 an arbitrary mapping such that for any
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y ∈ R(A) it holds

sup
{︁
∥Tα̂(δ,yδ)(yδ)− A†y∥

⃓⃓
yδ ∈ Y : ∥yδ − y∥ ⩽ δ

}︁
→ 0 for δ → 0. (2.2.1)

Then, (Tα, α̂) is called a convergent regularization scheme.

In this definition, Tα is the actual reconstruction algorithm, and α is called regulariza-

tion parameter. As the mapping â suggests, α can be chosen depending on the noise level

δ and the data yδ to control how accurately Tα approximates the Moore-Penrose inverse

A†. This is important to find the right balance between accuracy and stability of recon-

structions (Lemma 2.1.3). Together, the reconstruction algorithm Tα and an appropriate

parameter choice rule α̂ may form a convergent regularization scheme.

Remark 2.2.2. Usually, the dependency of the operator Tα on α > 0 is defined in a way

that larger values of α correspond to a higher amount of regularization. Accordingly, a

parameter choice rule α̂ usually fulfills α̂(δ, yδ) → 0 for δ → 0. This is different in the case

of iResNets [8], where the regularization parameter L < 1 is a Lipschitz constant and a

hyperparameter of the architecture. In this context, one chooses L→ 1 for δ → 0.

In practice, the term regularization is not always used in the strict sense of Defini-

tion 2.2.1. Even in the classical theory, there exist reconstruction approaches which do

not fulfill all the required properties of a regularization. For example, the stability condi-

tion is often replaced with a weaker form of continuity. Besides, for some approaches the

convergence Tα(y
δ) → A†y† only holds w.r.t. specific distance measures which are weaker

than the norm of X. This is explained in more detail in Section 2.4.

However, in practice, even technical continuity might sometimes be insufficient for

a robust reconstruction. We recall that for finite dimensional problems, A† is indeed

continuous but inappropriate for ill-conditioned problems (Section 2.1). What is really

needed is a controllable amount of stability which can be adapted to the requirements of

the situation. We took this aspect in particular into account with iResNets [8].

2.3 Spectral Regularization

The spectral theory from functional analysis provides tools for a deeper understanding

of ill-posed inverse problems and also a framework for a class of linear regularization

methods. The key is to decompose elements x and y with orthonormal bases (ONBs)

of the Hilbert spaces X and Y . In this context, (infinite dimensional) compact forward

operators A are particularly interesting because they always lead to ill-posedness. This

is a consequence of the spectral theorem [110, Satz VI.3.6], which introduces the singular

value decomposition (SVD).

Theorem 2.3.1 (singular value decomposition). Let A : X → Y be a compact, linear

operator. Then, there exists a singular value decomposition (uj, vj, σj)j∈N , where N ⊂ N,
and the following conditions hold:

9



� (uj) ⊂ Y is an ONB of R(A),

� (vj) ⊂ X is an ONB of N (A)⊥,

� σj > 0 and σj → 0 if |N | = ∞,

� Avj = σjuj, A
∗uj = σjvj, and

Ax =
∑︂

j∈N
σj⟨x, vj⟩uj. (2.3.1)

Proof. We define K = A∗A, which is a compact and self-adjoint operator since compact-

ness of A implies compactness of A∗ [4, Satz 10.6]. Note that N (K) = N (A) holds.

The spectral theorem for compact normal operators [4, Satz 10.12] provides an ONB

(vj) ⊂ X of N (K)⊥ and a sequence (λj) ⊂ C\{0}, j ∈ N ⊂ N with λj → 0 (or |N | is
finite) such that

Kx =
∑︂

j∈N
λj⟨x, vj⟩vj. (2.3.2)

Due to λj = ⟨λjvj, vj⟩ = ⟨Kvj, vj⟩ = ⟨Avj, Avj⟩ ⩾ 0, we can deduce that the values λj

are real and positive. Thus, we can define σj =
√︁
λj and uj =

1
σj
Avj. It directly follows

A∗uj =
1
σj
Kvj = σjvj and due to

⟨ui, uj⟩ =
1

σiσj
⟨Avi, Avj⟩ =

1

σiσj
⟨Kvi, vj⟩ =

λi
σiσj

⟨vi, vj⟩ =

⎧
⎨
⎩
1 if i = j,

0 if i ̸= j,
(2.3.3)

(uj) is an orthonormal system.

Finally, it holds

Ax = A

(︄∑︂

j∈N
⟨x, vj⟩vj

)︄
=
∑︂

j∈N
⟨x, vj⟩Avj =

∑︂

j∈N
σj⟨x, vj⟩uj. (2.3.4)

Besides, this implies that (uj) is an ONB of R(A).

In the following, we assume N = N which holds if N (A) and R(A) are infinite dimen-

sional. By using the SVD, the Moore-Penrose inverse of A can be explicitly expressed as

A†y =
∞∑︂

j=1

σ−1
j ⟨y, uj⟩vj, (2.3.5)

where y ∈ R(A) ⊕ R(A)⊥ [85, Satz 2.3.9]. The inversion is basically reduced to one-

dimensional operations on the components of y w.r.t. the singular vectors (uj). This

formulation also provides the reason why (infinite dimensional) compact forward operators

A lead to ill-posed inverse problems. According to Theorem 2.3.1, the singular values (σj)

are a sequence converging to zero. Thus, it holds σ−1
j → ∞, which implies that the Moore-

Penrose inverse is unbounded.

10
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Figure 2.1: Illustration of the filter function rα(σ
2) = 1

σ2+α
, which is known as

Tikhonov regularization [44, Chapter 5]. The left plot shows that rα is bounded
(for fixed α) and approximates 1/σ2 for α → 0. The right plot depicts σ2rα(σ

2) to
illustrate the damping of the singular values, which is particularly strong for the
small singular values.

Remark 2.3.2. Common examples of compact operators on infinite dimensional spaces

are the integration operator

A1 : C([a, b]) → C([a, b]), (A1x)(t) =

∫︂ t

a

x(s) ds (2.3.6)

and blurring operators (convolutions)

A2 : L
2(Ω) → L2(Ω), A2x = k ∗ xpad, xpad(ω) =

⎧
⎨
⎩
x(ω) on Ω,

0 elsewhere,
(2.3.7)

with k ∈ C1
0(Rn) and Ω ⊂ Rn being an open and bounded set with Lipschitz boundary.

The integration operator is compact since A1x is a continuously differentiable function

and C1([a, b]) is compactly embedded in C([a, b]) [4, Satz 8.6]. The output function of the

blurring operator A2x is also continuously differentiable due to the differentiable blurring

kernel k and it holds ∂i(k ∗xpad) = (∂ik)∗xpad [24, Theorem 3.13]. Thus, A2 is a bounded

operator into the Sobolev space H1(Ω), which is compactly embedded into L2(Ω) [4,

Satz 8.9]. Note that this is not the case for unbounded sets Ω ⊂ Rn.

The idea of spectral regularization is to modify (2.3.5) in order to obtain stability.

For this purpose, we introduce filter functions rα : [0, ∥A∥2] → R which damp the influ-

ence of the small singular values. Based on rα, filter-based reconstruction methods [85,

Section 3.3] are defined as

Tα(y) =
∞∑︂

j=1

rα(σ
2
j )σj⟨y, uj⟩vj. (2.3.8)

A comparison of (2.3.5) and (2.3.8) shows that for rα(λ) =
1
λ
, we would get Tα = A†. An

example of a filter function is depicted in Figure 2.1.
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Remark 2.3.3. There also exist alternative definitions of filter-based reconstruction

methods, e.g.,

T̃α(y) =
∞∑︂

j=1

r̃α(σj)σ
−1
j ⟨y, uj⟩vj. (2.3.9)

in [56, Section 4.1.1]. In this case r̃α ≡ 1 corresponds to T̃α = A†. Apart from that, both

definitions are equivalent.

Whether the reconstruction method Tα fulfills the required regularization properties

of Definition 2.2.1 depends on the choice of the filter function rα. The following theorem

specifies the conditions rα has to fulfill and provides a guideline for choosing α.

Theorem 2.3.4. Let rα : [0, ∥A∥2] → R be a family of piecewise continuous2, bounded

functions which fulfill

(i) ∀λ ∈
(︁
0, ∥A∥2

]︁
: lim

α→0
rα(λ) =

1

λ
,

(ii) ∃C ⩾ 0: ∀λ ∈
[︁
0, ∥A∥2

]︁
,∀α > 0: λ|rα(λ)| ⩽ C.

(2.3.10)

If α = α(δ) is chosen such that

α(δ) → 0 and δ ·
√︂

∥rα(δ)∥∞ → 0 (2.3.11)

hold for δ → 0, then (Tα, α(δ)) is a convergent regularization scheme.

Proof. First, we show that Tα is a continuous operator. For arbitrary y ∈ Y it holds

∥Tα(y)∥2 =
∞∑︂

j=1

|rα(σ2
j )σj⟨y, uj⟩|2 ⩽

∞∑︂

j=1

σ2
j |rα(σ2

j )|·|rα(σ2
j )|·|⟨y, uj⟩|2

⩽ C ·∥rα∥∞ ·∥y∥2.
(2.3.12)

To prove the convergence property, we consider yδ, y ∈ Y with ∥yδ − y∥ ⩽ δ and split up

the reconstruction error

∥Tα(yδ)− A†y∥ ⩽ ∥Tα(yδ)− Tα(y)∥+ ∥Tα(y)− A†y∥ (2.3.13)

into a data error and an approximation error. For the data error, we use the linearity of

Tα and the continuity estimation from above and obtain

∥Tα(yδ)− Tα(y)∥ ⩽
√︁
C ·∥rα∥∞ ·∥yδ − y∥ ⩽

√
C ·δ ·

√︁
∥rα∥∞. (2.3.14)

This converges to zero for δ → 0 with the proposed parameter choice α = α(δ). The

approximation error ∥Tα(y)−A†y∥ also converges to zero for α → 0 [85, Satz 3.3.1], thus,

(Tα, α(δ)) is a convergent regularization scheme.

2At all discontinuities, the left-handed and right-handed limits must exist.
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According to this theorem, it is possible to design custom filter functions depending on

the application in order to obtain a convergent regularization scheme. However, the SVD

is not known for arbitrary forward operators A, and computing it can be quite extensive,

in particular for high dimensional problems. That is why other algorithms have mainly

prevailed in practice.

2.4 Variational Regularization

Elements x ∈ X with a high data fidelity (i.e., it holds ∥Ax− yδ∥ ⩽ δ) can be considered

as potential solutions of the inverse problem Ax = y. Variational reconstruction methods

aim at finding those elements by formulating the task as a minimization problem

min
x∈X

1

2
∥Ax− yδ∥2. (2.4.1)

To obtain a solution, analytical or numerical optimization methods can be applied (Sec-

tion 2.6). However, in case of ill-posedness, additional regularization is needed to guar-

antee the existence of solutions, as the following remark shows.

Remark 2.4.1. For ill-posed inverse problems in the sense of Nashed (Definition 2.1.2),

the minimum problem (2.4.1) usually does not admit a solution. More precisely, there

only exists a solution if the projection of yδ onto R(A) is even contained in R(A).

This can be seen by decomposing yδ = yδ1+y
δ
2 into y

δ
1 ∈ R(A) and yδ2 ∈ R(A)⊥. Then,

it holds

∥Ax− yδ∥2 = ∥Ax− yδ1∥2 + ∥yδ2∥2. (2.4.2)

By considering a sequence (xk) ⊂ X with Axk → yδ1, it follows infx ∥Ax − yδ1∥ = 0. For

yδ1 ∈ R(A)\R(A), this infimum cannot be attained by any x.

To regularize the problem, we introduce a so-called penalty term R : X → R ∪ {∞}.
This functional can encode prior knowledge which we might have about the ground truth

x†, and penalize unwanted features in x with high values of R(x). A solution of the inverse

problem is thus expected to have small values w.r.t. both (2.4.1) and R. By bringing this

together, we define a variational regularization method

min
x∈X

1

2
∥Ax− yδ∥2 + αR(x), (2.4.3)

where the parameter α > 0 balances between data fidelity and penalty term. It is also

possible to consider other data discrepancy terms of a more general form F (Ax, yδ) with

F : Y × Y → R instead of the squared norm, as done in [21], for example.

One of the most basic penalty terms is R(x) = 1
2
∥x∥2, known as Tikhonov regulariza-

tion [44, Chapter 5]. Due to its differentiability, it allows for computing the first-order

optimality condition of (2.4.3) as

(A∗A+ αId)x = A∗yδ. (2.4.4)

13



This can be interpreted as a regularized normal equation (Section 2.1). Another commonly

used penalty term is R(x) =
∑︁

j |⟨x, bj⟩|, i.e., the ℓ1-norm of the components of x w.r.t.

an ONB (bj) ⊂ X. Using this in (2.4.3) enforces the solution x to be sparse w.r.t. (bj)

[21, Section 3.2], i.e., only finitely many of the components are non-zero. For the task

of image denoising, the so-called total variation (TV) regularization has been established

[89], which is based on the penalty term R(x) = ∥∇x∥1. It enforces the edges ∇x of an

image x to be sparsely distributed, and it is one of the most frequently used penalty terms

for imaging problems.

Whether the minimizing problem (2.4.3) admits a solution depends on the properties of

R. In order to define a convergent regularization scheme in the sense of Definition 2.2.1,

we also have to verify the uniqueness, stability, and convergence of solutions. These

properties and the required conditions on R are covered in the remainder of this section.

Existence and Uniqueness

We start with the definitions of four fundamental properties for functionals. The first

one, convexity, is graded into three levels.

Definition 2.4.2 (convex). A functional R : X → R ∪ {∞} is called

� convex if for all x1, x2 ∈ X and λ ∈ [0, 1] it holds

R
(︁
λx1 + (1− λ)x2

)︁
⩽ λR(x1) + (1− λ)R(x2), (2.4.5)

� strictly convex if for all x1, x2 ∈ X s.t. x1 ̸= x2 and for all λ ∈ (0, 1) it holds

R
(︁
λx1 + (1− λ)x2

)︁
< λR(x1) + (1− λ)R(x2), (2.4.6)

� m-strongly convex if there exists m > 0 such that R− m
2
∥ · ∥2 is convex.

Definition 2.4.3 (coercive). A functional R : X → R∪{∞} is called coercive if ∥x∥ → ∞
implies R(x) → ∞.

Definition 2.4.4 (weakly lower semicontinuous). A functional R : X → R∪{∞} is called

weakly lower semicontinuous if for xk ⇀ x it holds R(x) ⩽ lim infk→∞R(xk).

Definition 2.4.5 (proper). A functional R : X → R∪{∞} is called proper if there exists

at least one x ∈ X such that R(x) <∞.

Using these properties, one can prove a theorem for the existence and uniqueness of

solutions of variational regularization schemes [57, Theorem 3.1], [24, Theorem 6.17].

Theorem 2.4.6 (existence and uniqueness). If R is proper, weakly lower semicontinuous,

coercive, and bounded from below, there exists a solution of (2.4.3). If R is additionally

strictly convex, the minimizer of (2.4.3) is unique.
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Proof. Since R is bounded from below, the infimum of J(x) = 1
2
∥Ax−yδ∥2+αR(x) is a real

number. Thus, there exists a minimizing sequence (xk) ⊂ X such that J(xk) converges

to this infimum. Then, J(xk) will in particular be bounded. Due to the coercivity of R,

J is also coercive which implies that (xk) itself is bounded.

Since X is a Hilbert space, there exists a weakly convergent subsequence (xkl) with

xkl ⇀ x̂ [4, Satz 6.10]. By using the weak lower semicontinuity of R and 1
2
∥A · −yδ∥2, we

obtain

J(x̂) ⩽ lim inf
l→∞

J(xkl) = inf
x∈X

J(x). (2.4.7)

Thus, x̂ is a minimizer of F .

If R, and thus J , is strictly convex, then for two different elements x1, x2 ∈ X with

J(x1) = J(x2), the element 1
2
(x1 + x2) has an even lower value of J . That is why the

minimizer of J is unique in this case.

We note that the ℓ1-penalty term and the TV functional do not fulfill all of the required

assumptions. Both of them are only convex but not strictly convex and TV is only coercive

if, for example, the boundary values or the average value of x is kept fixed. However, these

deficiencies can be easily overcome, e.g., by adding ε∥ · ∥2 for a small constant ε > 0.

Stability

For convex functionals, there exists a generalization of the concept of derivatives. The

so-called subdifferential [86, Section 23] of R at x ∈ X is defined as the set

∂R(x) = {v ∈ X | ∀z ∈ X : R(z) ⩾ R(x) + ⟨v, z − x⟩}. (2.4.8)

Some of its properties are analogous to the classical gradient. In case of classical differ-

entiability, it holds ∂R(x) = {∇R(x)}. Besides, if x is a minimizer of the functional, the

zero-element is contained in the subdifferential. This will also be used in the proof of the

stability theorem 2.4.7.

With the assumptions that were sufficient for the existence of solutions of (2.4.3)

(Theorem 2.4.6), one only obtains weak stability results [57, Theorem 3.2]. That means, a

convergent sequence of data yδk → yδ does not imply the convergence of the corresponding

sequence of solutions (xk). Instead, only the weak limits of subsequences (xkl) can be

guaranteed to be minimizers w.r.t. yδ.

For an actual stability guarantee, a strongly convex penalty term is needed. This

allows even for an explicit estimation of the Lipschitz constant of the reconstruction

method (yδ ↦→ x). As the following theorem shows, the desired amount of stability can

then be controlled via the regularization parameter α.

Theorem 2.4.7 (stability). Let R be m-strongly convex, proper, weakly lower semicon-

tinuous, coercive, and bounded from below. Then, the solutions of (2.4.3) depend Lips-

chitz continuously on yδ. In particular, for yδ1, y
δ
2 ∈ Y and the corresponding solutions

x1, x2 ∈ X of (2.4.3) it holds ∥x1 − x2∥ ⩽ 1
2
√
mα

·∥yδ1 − yδ2∥.
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Proof. First, we write R = R̃ + m
2
∥ · ∥2 as the sum of a convex functional R̃ and the

squared norm. By Theorem 2.4.6, there exist unique solutions xi (for i = 1, 2) of

min
x∈X

1

2
∥Ax− yδi ∥2 + αR̃(x) +

αm

2
∥x∥2. (2.4.9)

According to the first-order optimality condition, it holds

0 ∈ (A∗A+mαId)xi − A∗yδi + α∂R̃(xi). (2.4.10)

Thus, we can choose vi ∈ ∂R̃(xi) from the subdifferential such that

(A∗A+mαId)xi + αvi = A∗yδi . (2.4.11)

We can now subtract this equation for i = 2 from i = 1 and obtain

(A∗A+mαId)(x1 − x2) + α(v1 − v2) = A∗(yδ1 − yδ2). (2.4.12)

Taking the inner product of both sides of the equation with x1 − x2 leads to

⟨A∗A(x1 − x2), x1 − x2⟩+ ⟨mα(x1 − x2), x1 − x2⟩+ ⟨α(v1 − v2), x1 − x2⟩
= ⟨A∗(yδ1 − yδ2), x1 − x2⟩.

(2.4.13)

Basic transformations result in

∥A(x1 − x2)∥2 +mα∥x1 − x2∥2 + α⟨v1 − v2, x1 − x2⟩ = ⟨yδ1 − yδ2, A(x1 − x2)⟩. (2.4.14)

On the right hand side, one can apply the inequalities of Cauchy-Schwartz and Young,

which imply

⟨yδ1 − yδ2, A(x1 − x2)⟩

⩽ ∥yδ1 − yδ2∥·∥A(x1 − x2)∥ =
1√
2
∥yδ1 − yδ2∥·

√
2∥A(x1 − x2)∥

⩽ 1

4
∥yδ1 − yδ2∥2 + ∥A(x1 − x2)∥2.

(2.4.15)

Combining this with (2.4.14) leads to

mα∥x1 − x2∥2 + α⟨v1 − v2, x1 − x2⟩ ⩽
1

4
∥yδ1 − yδ2∥2. (2.4.16)

Due to the monotonicity of subdifferentials [19, Section 1], it holds ⟨v1 − v2, x1 − x2⟩ ⩾ 0

and we end up with

∥x1 − x2∥2 ⩽
1

4mα
∥yδ1 − yδ2∥2, (2.4.17)

which is the desired stability estimate.
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Convergence

In the following, we study the convergence of solutions of (2.4.3) for vanishing noise level

δ. To highlight the dependency on δ and the regularization parameter α, we denote those

solutions by xδα. For the ground truth x†, we generalize the term of a minimum-norm

solution (2.1.1) to an R-minimizing solution

argmin
x∈X

R(x) s.t. Ax = y†. (2.4.18)

If R is strictly convex, the minimizer is uniquely determined.

Exploiting the assumptions that were sufficient for the existence of solutions of (2.4.3)

(Theorem 2.4.6), it is possible to derive a result about weak convergence of subsequences

of (xδα) to R-minimizing solutions [57, Theorem 3.5]. This can be improved by employing

two modifications. The first one is a so-called source condition

∃w ∈ Y : A∗w ∈ ∂R(x†), (2.4.19)

which is assumed for the ground truth. Second, it is beneficial to measure the convergence

w.r.t. the Bregman distance

Dξ(x, z) = R(x)−R(z)− ⟨ξ, x− z⟩, for ξ ∈ ∂R(z), (2.4.20)

which is based on the idea of subdifferentials. Then it is even possible to obtain a con-

vergence rate, i.e., Dξ(x
δ
α, x

†) ⩽ C ·δ [26, Theorem 2] with some constant C > 0. For this

result, the regularization parameter α has to be chosen proportionally to δ.

In the following, we present a result about convergence w.r.t. the norm of X, which

relies on strong convexity of R. It does not require a source condition for x†, but makes

no assertion about the speed of convergence.

Theorem 2.4.8 (convergence). Let R be m-strongly convex, proper, weakly lower semi-

continuous, coercive and bounded from below, x† ∈ X be an R-minimizing solution of

Ax = y†, consider yδ ∈ Y with ∥yδ − y†∥ ⩽ δ, and let xδα be the solution of (2.4.3).

Then, with α chosen proportionally to δ, it holds ∥xδα − x†∥ → 0 for δ → 0.

Proof. Let Tα be the operator which maps yδ to the unique solution (Theorem 2.4.6) of

(2.4.3), i.e., Tα(y
δ) = xδα. Then, we can decompose ∥xδα − x†∥ ⩽ ∥Tα(yδ) − Tα(y

†)∥ +

∥Tα(y†)− x†∥ into a data error and an approximation error.

By Theorem 2.4.7, the data error can be estimated from above by

∥Tα(yδ)− Tα(y
†)∥ ⩽ 1

2
√
mα

·∥yδ − y†∥ ⩽ δ

2
√
mα

. (2.4.21)

Due to choosing α proportional to δ, this term converges to zero for δ → 0.

It remains to prove ∥Tα(y†)− x†∥ → 0 for α → 0. Due to the minimizing property of
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Tα(y
†), it holds

1

2
∥ATα(y†)− y†∥2 + αR

(︁
Tα(y

†)
)︁
⩽ 1

2
∥Ax† − y†∥2 + αR(x†) = αR(x†). (2.4.22)

This implies R
(︁
Tα(y

†)
)︁
⩽ R(x†) and

1

2
∥ATα(y†)− y†∥2 ⩽ αR(x†) → 0 for α → 0. (2.4.23)

Note that both properties still hold true if we choose an arbitrary subsequence
(︁
Tαk

(y†)
)︁
,

which will later be important. Due to the coercivity of R, any such subsequence is bounded

and there exists a weakly convergent subsubsequence
(︁
Tαkl

(y†)
)︁
[4, Theorem 6.10], i.e.,

Tαkl
(y†)⇀ x̂. Using weak lower semicontinuity, we obtain

R(x̂) ⩽ lim inf
l→∞

R
(︁
Tαkl

(y†)
)︁
⩽ R(x†), (2.4.24)

∥Ax̂− y†∥ ⩽ lim inf
l→∞

⃦⃦
ATαkl

(y†)− y†
⃦⃦
= 0. (2.4.25)

Since x† is the unique R-minimizing solution of Ax = y†, it follows x̂ = x†. If any

subsequence
(︁
Tαk

(y†)
)︁
has a subsubsequence which converges weakly to x†, then the

whole sequence must already fulfill Tα(y
†)⇀ x†.

Besides, R
(︁
Tα(y

†)
)︁
⩽ R(x†) implies R

(︁
Tα(y

†)
)︁
→ R(x†). Due to strong convexity,

we can write R = R̃+ m
2
∥ · ∥2 with R̃ being convex and also weakly lower semicontinuous.

Thus, it holds

m

2
∥x†∥2 ⩽ lim inf

m

2
∥Tα(y†)∥2 ⩽ lim sup

m

2
∥Tα(y†)∥2

⩽ lim supR
(︁
Tα(y

†)
)︁
+ lim sup−R̃

(︁
Tα(y

†)
)︁

= lim supR
(︁
Tα(y

†)
)︁
− lim inf R̃

(︁
Tα(y

†)
)︁
⩽ R(x†)− R̃(x†) =

m

2
∥x†∥2,

(2.4.26)

which leads to ∥Tα(y†)∥ → ∥x†∥. Since X is a Hilbert space, ∥Tα(y†)∥ → ∥x†∥ together

with Tα(y
†)⇀ x† is equivalent to Tα(y†) → x†.

2.5 Bayesian View on Variational Regularization

In addition to the functional analytic view from the previous sections, inverse problems

can also be analyzed from the statistical side, using random variables and probability

distributions. To do so, we consider the spaces X and Y to be finite dimensional, which

enables us to easily work with probability density functions (pdf). Detailed introductions

into this type of theory for inverse problems (called Bayesian theory) are provided by

[61, 100, 36, 13].

Since the ground truth x† is unknown, it can be modeled as the realization of a random

variable X ∼ pX . The pdf pX : X → [0,∞) represents the so-called prior distribution.

This is related to the prior knowledge which we might have about x†, but typically we
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cannot expect to know the pdf explicitly. Similarly, the additive noise on yδ is also modeled

as a random variable E ∼ pE . Thus, yδ is a realization of a random variable Y = AX + E .
Exploiting this dependency between the three random variables, the conditional pdf of Y
given X can be computed as pY|X (yδ|x) = pE(yδ − Ax).

The inverse problem, however, consists in finding X given Y , which is why we are par-

ticularly interested in the conditional pdf pX|Y . It represents the probability distribution

of all possible solutions of the inverse problem and is thus called posterior distribution.

The dependency between prior and posterior distribution is given by Bayes’ theorem [61,

Theorem 3.1]

pX|Y(x|yδ) =
pY|X (yδ|x)·pX (x)

pY(yδ)
. (2.5.1)

Thus, to solve the inverse problem one needs to determine pX and pE .

The element x for which pX|Y(x|yδ) is maximal is called the maximum a posteriori

(MAP) estimate for a solution of the inverse problem. If we assume the noise distribution

to be Gaussian, i.e.

pE(η) =
1

(2π)
n
2 δn

·exp
(︃
− 1

2δ2
∥η∥2

)︃
, (2.5.2)

we can find an interesting relation between Bayesian theory and variational regularization

(Section 2.4). The MAP estimate is the solution of

max
x∈X

pX|Y(x|yδ). (2.5.3)

We can now use the log function and Bayes’ theorem (2.5.1) to deduce that (2.5.3) is

equivalent to

min
x∈X

− log
(︁
pX|Y(x|yδ)

)︁
(2.5.4)

⇔ min
x∈X

− log

(︃
pY|X (yδ|x)·pX (x)

pY(yδ)

)︃
(2.5.5)

⇔ min
x∈X

− log
(︁
pY|X (y

δ|x)
)︁
− log (pX (x)) + log

(︁
pY(y

δ)
)︁

(2.5.6)

⇔ min
x∈X

− log
(︁
pE(y

δ − Ax)
)︁
− log (pX (x)) (2.5.7)

⇔ min
x∈X

log
(︁
(2π)

n
2 δn
)︁
+

1

2δ2
∥yδ − Ax∥2 − log (pX (x)) (2.5.8)

⇔ min
x∈X

1

2
∥Ax− yδ∥2 − δ2 log (pX (x)) . (2.5.9)

Note that the minimizing problem (2.5.9) corresponds to a variational regularization

scheme (2.4.3) with −log ◦ pX being the penalty term. In other words, variational reg-

ularization equals MAP estimation and the penalty functional R encodes the prior dis-

tribution. The regularization parameter α equals the squared noise level δ2, i.e., the

variance of pE . Besides, the equations (2.5.7) to (2.5.9) show that the data discrepancy

term 1
2
∥Ax− yδ∥2 is the optimal choice for gaussian noise. For other types of noise, one

can choose other data discrepancy terms according to (2.5.7).
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Remark 2.5.1. The Bayesian view demonstrates that data fidelity and prior knowledge

can be modeled independently of each other. The first only depends on the noise dis-

tribution, the second only on the prior distribution. That is why many reconstruction

methods, in particular the deep learning approaches from Section 3.3.2 and 3.3.3, are

separating these tasks too. This leads to interpretability and flexibility.

However, in the end, data discrepancy term and penalty term have to complement

each other to work well together. Parts of x† which are well-determined solely from the

data yδ do not necessarily have to be regularized by a penalty term. Thus, sometimes it

can be easier to learn the complete reconstruction process at once (Section 3.3.1).

We also analyzed iResNets from the Bayesian point of view. There, we found a relation

to the mean of the posterior distribution, i.e., the conditional expectation E(X|Y) [11].

2.6 Solving Variational Minimization Problems

Variational reconstruction methods with appropriate penalty terms are convergent regu-

larization schemes (Section 2.4), but they define the regularized solution only implicitly

via a minimization problem. Thus, an additional algorithm is needed for an explicit

computation, or approximation, of the minimizer. Most of the time, iterative numerical

methods are used.

The data fidelity term 1
2
∥Ax−yδ∥2 is differentiable with A∗(Ax−yδ) being the gradient.

If the penalty term R is also differentiable, a gradient descent algorithm

xk+1 = xk − λ
(︁
A∗(Axk − yδ) + α∇R(xk)

)︁
(2.6.1)

with a step size λ > 0 can be used to approximate the minimizer of (2.4.3). For this to

work reliably, convexity of R is crucial since that prevents the algorithm from converging

to a local minimum.

The ℓ1-penalty term R(x) =
∑︁

j |⟨x, bj⟩|, however, is not differentiable. For this func-
tional the iterative shrinkage-thresholding algorithm (ISTA) [37]

xk+1 = Sλα

(︁
xk − λA∗(Axk − yδ)

)︁
. (2.6.2)

has been developed. The soft-thresholding function Sλα(xj) = sgn(xj)max{0, |xj| − λα}
is applied on each component w.r.t. the ONB (bj) ⊂ X, and therefore causes a decrease

of the ℓ1-functional. Using the so-called proximal mapping [81, Section 1.1]

proxR(z) = argmin
x∈X

1

2
∥x− z∥2 +R(x), (2.6.3)

this algorithm can also be generalized to other penalty terms R. This is known as the

proximal gradient method [81, Section 4.2]

xk+1 = proxλαR
(︁
xk − λA∗(Axk − yδ)

)︁
. (2.6.4)
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Another well-known approach is the so-called primal-dual algorithm [28]. It was de-

veloped for minimization problems of the form

min
x∈X

F (Kx) +G(x), (2.6.5)

where K : X → Z is a linear operator mapping to a Hilbert space Z, and F : Z → [0,∞]

and G : X → [0,∞] are proper, convex and lower semicontinuous functions. By using the

convex conjugate F ∗ of F , one can introduce a dual variable z ∈ Z and reformulate the

problem as

min
x∈X

max
z∈Z

⟨Kx, z⟩+G(x)− F ∗(z). (2.6.6)

Based on this, one can compute proximal gradient steps w.r.t. z and x. These are the

main components of the final algorithm

zk+1 = proxσF ∗(zk + σKx̄k),

xk+1 = proxτG(x
k − τKzk+1),

x̄k+1 = xk+1 + ρ(xk+1 − xk),

(2.6.7)

where σ, τ and ρ are step size parameters. More details and convergence theory are

covered in [28].

There are two possibilities to apply this algorithm for variational regularization meth-

ods. First, for K = A, F (z) = 1
2
∥z−yδ∥2 and G = αR, the primal variable x is optimized

in the solution space X and the dual variable z in the data space Y . This is particularly

well-suited for problems where X and Y are fundamentally different (e.g., CT recon-

struction). The learned primal-dual architecture [3] is based on this idea (Section 3.3.1).

Second, the algorithm can be applied for specific penalty terms like TV(x) = ∥∇x∥1. By
choosing K = ∇, F (z) = α∥z∥1 and G(x) = 1

2
∥Ax − yδ∥2, the TV functional can be

decomposed. This way, the complicated proximal mapping of TV is avoided.

A different idea of variable splitting is used for the alternating direction method of

multipliers (ADMM) [23]. There, (2.4.3) is reformulated into a two-variable optimization

problem with side constraint

min
x,z∈X

1

2
∥Ax− yδ∥2 + αR(z), s.t. x = z. (2.6.8)

By using the augmented Lagrangian one can derive the iterations

xk+1 = argmin
x

1

2
∥Ax− yδ∥2 + ρ

2
∥x− zk + uk∥2,

zk+1 = proxα
ρ
R(x

k+1 + uk),

uk+1 = uk + xk+1 − zk+1,

(2.6.9)

where ρ > 0 is a step size parameter and uk is the dual variable. More details and

convergence theory can be found in [23]. Due to the splitting of the objective functional
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into two parts which are easier to optimize (w.r.t. x and z, respectively), few iterations

are often sufficient to come at least in a neighborhood of the exact solution. This is ideal

in applications where computations have to be fast, but inexact minimization is sufficient,

e.g., plug-and-play methods (Section 3.3.2).

Remark 2.6.1. There are many deep learning approaches for inverse problems which are

based on one of the presented algorithms. In unrolled architectures (Section 3.3.1), the

layers of the network are inspired by the structure of the iterations. For plug-and-play

methods (Section 3.3.2), the proximal mappings are replaced with learned denoisers. And

learned penalty terms (Section 3.3.3) need a minimization algorithm for their application.

In practice, iterative algorithms can only be executed with a finite number of steps.

In case of fast convergence and enough time for computations, the resulting error is ne-

glectable. However, terminating the iteration significantly before reaching the limit is

also a type of regularization. This strategy is called early stopping. Performing gradient

descent with early stopping just for the data discrepancy (2.4.1) without further penalty

term is known as the Landweber method, which is indeed a convergent regularization

scheme [53]. Early stopping is also frequently applied in deep learning algorithms, in

particular with deep image prior (Section 3.3.4). We also considered this type of regular-

ization for the analytic deep prior approach [7].
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Chapter 3

Deep Learning for Inverse Problems

Machine learning is the term for algorithms which teach themselves how to solve a specific

task. To do so, one typically needs (a lot of) data which is related to the task. These data

are then processed by the algorithm in order to adjust itself in a way that the task can

be solved afterward even with new data. Deep learning is a subfield of machine learning

which relies on (deep) neural networks (Section 3.1).

In imaging and image processing applications, deep learning is particularly success-

ful and often outperforms classical (purely model-based, not data-driven) methods [69],

[10, 9]. Some fundamental reasons for the success of deep learning are the ability of

neural networks to precisely extract features and information from big amounts of high-

dimensional data and a great variability of network architectures [63].

In the context of inverse problems, deep learning is particularly desirable for obtaining

prior knowledge about the ground truth. If the solution of an inverse problem should be,

e.g., a natural-looking image, one has to encode this knowledge into a regularization

method (Section 2.2). Doing this by hand can sometimes be hard or even intractable. In

other words, it is hard to define mathematically what a natural-looking image is. This is

the point where deep learning can help out. Given a (sufficiently large) dataset of ground

truth samples, a neural network can extract useful information from the prior distribution

(Section 2.5) to form a reconstruction method.

For all deep learning based reconstruction methods considered in this thesis, the

Hilbert spaces X and Y of ground truth and data (Chapter 2) need to be discretized

for the numerical application of the algorithms1. Accordingly, the numerically obtained

reconstructions are finite dimensional. In order to still interpret them as (discretized)

solutions of the original inverse problem Ax = y, and not just as solutions of a discretized

problem, it is beneficial to consider the numerical reconstruction algorithm as a discrete

version of an infinite dimensional approach acting on X and Y . Therefore, it is important

that all theoretical results for reconstruction algorithms are independent of the discretiza-

tion or even hold in the infinite dimensional setting. We thus do not use an extra notation

for the discretized spaces, but define all reconstruction approaches directly on X and Y .

Besides, the practical challenges of ill-posedness exist both in the original as well as in

1There also exist approaches capable of modeling infinite dimensional operators, e.g., DeepONets [68]

23



the discretized setting, as discussed in Section 2.1.

The next section will briefly cover the basics of convolutional neural networks and

their learning process. After this, we will discuss the challenges of obtaining theoretical

guarantees for deep learning approaches and properties which are desired in the context of

inverse problems. For this purpose, the regularization properties from the classical theory

(Section 2.2 and 2.4) will be of particular interest. Finally, we give an overview of the

most common deep learning approaches for solving inverse problems.

3.1 Neural Networks

A feedforward neural network [47, Chapter 6] is a parametric function φθ : Rdin → Rdout

which is almost everywhere differentiable w.r.t. both the input u ∈ Rdin and the parame-

ters θ ∈ Rdparam . Typically, it is composed of several so-called layers φθk,k, i.e.,

φθ = φθK ,K ◦ ... ◦ φθ1,1. (3.1.1)

More general structures are also possible. The specific design of φθ is called the architec-

ture of the network.

Each layer is usually of a mathematically simple form, such that there are explicit

formulas for the derivatives Duk
φθk,k(uk) and Dθkφθk,k(uk) w.r.t. input and parameters of

the layer. Using the chain rule, it is thus possible to compute the derivative of the whole

network, w.r.t. all parameters θ and the input u, automatically. This procedure is called

backpropagation [55, Section 5].

For imaging applications, convolutional neural networks (CNNs) [47, Chapter 9] with

convolutional layers are the most widespread type of architecture (Figure 3.1). The pa-

rameters θ of a convolutional layer are a weight tensor, which is applied as a linear filter

on the input image, and a bias vector, which is added to the result. This affine lin-

ear transformation is often followed by a nonlinear activation function, which is applied

pointwise.

Convolutions have two crucial properties which are beneficial for deep learning. First,

they require relatively few parameters while being highly expressive. In other words,

convolutions define a valuable and diverse class of transformations in a parameter-efficient

way. For even more expressivity, CNNs can have multiple channels, which increases

the dimensionality of the processed data. Second, convolutions are equivariant w.r.t.

translations of the input, i.e., for a translated input the corresponding output is translated

in the same way but stays the same apart from that. This property is quite useful in many

image processing applications.

For learning how to solve a specific task with φθ, an algorithm for adjusting the

parameters θ is required. We refer to this process as the training of the neural network.

The most basic form is the so-called supervised training, which can be applied if a dataset

of input-output-pairs (ui, vi) is available. During training, the network has to learn to
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Figure 3.1: Typical architecture of a CNN. The network is composed of several
convolutional layers. Each layer consists of a multi-channel convolution with a
weight tensor followed by the addition of a bias vector and a pointwise nonlinear
activation function. Weight and bias are learnable parameters of the network.

map each ui to the corresponding target vi (e.g., φθ(y
δ
i )

!≈ x†i for ui = yδi and vi = x†i ).

For this purpose a differentiable loss function L : Rdout × Rdout → R is defined, which

models the distance (or the error, respectively) between the output of the network and

the desired target.

A large value of L(φθ(ui), vi) means that the network makes large errors in the attempt

to solve the task. Accordingly, the objective of the training is to find parameters θ such

that the loss function is minimized on a given set of pairs (ui, vi)i=1,...,N , the so-called

training data. Mathematically, the training of φθ is an optimization process for solving

min
θ∈Rdparam

1

N

N∑︂

i=1

L(φθ(ui), vi) (3.1.2)

as good as possible.

A variety of algorithms for solving such minimization problems numerically has been

presented in Section 2.6. For (3.1.2), gradient descent is a suitable choice since the gradient

∇θL(φθ(ui), vi) can be automatically computed via backpropagation. Since the number of

training samples N can be very large in general, one typically chooses a smaller subset of

pairs (ui, vi) (called batch) for each step. This procedure reduces the computational costs

of the individual gradient steps and is called stochastic gradient descent [55, Section 4].

Tasks without a clear input-target-relation (e.g., learning the prior distribution from a

dataset of ground truth samples (x†i )) have to be learned by using unsupervised training.

That means instead of L, a task-specific objective function, which may depend on the net-

work output and possible further arguments, is used. Due to the large variety of possible

applications, the strategies for modeling the training objective are highly individual.
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3.2 Guarantees for Deep Learning Approaches

Task-specific properties (e.g. reconstruction performance, stability) which a neural net-

work is expected to fulfill after training are often only empirically verified. That means

the network is evaluated on a test dataset, but uncertainty about the behavior on new

data remains. In the context of inverse problems, this is a theoretical drawback compared

to classical methods, which have provable regularization properties (Chapter 2).

There are certain types of reconstruction errors which occur particularly often. Three

such errors are emphasized in [49]. The first one consists of so-called hallucinations, which

means that a reconstruction may contain realistic-looking artifacts that are not present in

the ground truth. Second, reconstructions may be instable w.r.t. the data yδ as a direct

consequence of ill-posedness. The third issue is an unpredictable performance on (new)

data with slightly different features.

Another weakness found in neural networks is the existence of so-called adversarial

examples [101]. Originally discovered in classification tasks, they denote input images

with small (almost invisible) perturbations that cause misclassification. Transferred to

inverse problems, this means that there may exist a small additive noise on the data yδ

such that the reconstruction with a neural network fails severely.

All these observations illustrate that theoretical guarantees ensuring the reliability

of deep learning based reconstruction methods are highly desirable. Naturally, the four

regularization properties from the classical theory about existence, uniqueness, stability,

and convergence of solutions (Section 2.2) would be appropriate conditions. However,

dependent on the concrete approach, it can be quite challenging to obtain those properties

for deep learning methods. In addition, there are further aspects which are desirable in

the context of deep learning for inverse problems, which we will discuss in the following.

With straightforward approaches, where a neural network directly outputs the recon-

struction (Section 3.3.1), the question of existence and uniqueness is trivial. For other ap-

proaches, e.g., where neural networks are integrated into iterative methods (Section 3.3.2

and 3.3.3), these properties often remain unclear.

As elaborated above, stability is of particular importance. In the context of deep

learning this is often called robustness w.r.t. perturbations of the input. Unfortunately,

it is a quite difficult property to obtain. According to Lemma 2.1.3, reconstruction meth-

ods cannot be arbitrarily accurate and stable at the same time. Since neural networks

are often great in learning highly accurate solutions, robustness can be their weakness.

There are certain techniques for increasing the robustness during training, e.g., CLIP

(cheap Lipschitz training) [25] or stability training [113], but they don’t provide theoreti-

cal guarantees. Approaches which are provably stable often rely on Lipschitz constraints

for certain network parts, e.g., iResNets [8] and plug-and-play methods (Section 3.3.2).

However, this typically causes a significant reduction of the expressivity of the neural

network.

The classical convergence property is to make sure that the regularized reconstruction

26



is close to the ground truth. However, due to its technical formulation, it is often of

less practical relevance. This is because, in many applications, the noise level δ is as-

sumed to be fixed. Low reconstruction errors for this specific noise level are then more

in demand than the theoretical convergence for δ → 0. Besides, most deep learning ap-

proaches do not have a regularization parameter α, which can be chosen after the training

to change the amount of regularization. Nevertheless, deep learning methods with con-

vergence guarantees do exist [77]. For iResNets, we also derived a convergence theorem

[8, Theorem 3.1].

A further desirable aspect is the property of data consistency, i.e., the reconstruction

x̂ has to fulfill ∥Ax̂−yδ∥ ≈ ∥y†−yδ∥. This particularly addresses the previously described

phenomenon of hallucination. Typically, a reconstruction produced by a neural network

has a realistic appearance, but, dependent on the approach, it might be unclear whether

it is actually a valid solution w.r.t. the data yδ. To obtain a guarantee for data consistency

it is beneficial to combine classical and deep learning approaches.

In addition to rigorous guarantees, interpretability of reconstruction approaches is

of high relevance for practical application. If the way of computing a reconstruction is

traceable and comprehensible, the underlying algorithm is probably more reliable than a

black-box model.

In principle, high reconstruction performances and theoretical regularization prop-

erties do not exclude each other. On the contrary, according to [52] any appropriate

reconstruction method must exhibit some regularization properties otherwise it fails in

practice. However, these properties are often not explicitly defined, but only a conse-

quence of the training process, and therefore cannot be guaranteed. To overcome these

challenges, I investigated regularization properties for special neural network architectures

(Chapter 4). For doing so, a compromise between the expressivity of the architectures

and possibilities for theoretical analysis is necessary.

3.3 Overview of Common Approaches

The possibilities of applying deep learning to inverse problems are highly diverse. Solution

approaches may differ in various aspects, e.g., in terms of the underlying architecture, the

role of the neural network in the reconstruction process, the data needed for training,

obtainable guarantees, and possible applications. Many successful methods rely on the

combination of deep learning with ideas from classical regularization [13].

For the following overview, the approaches are sorted into five categories. We are

focussing primarily on general methods which are applicable to a wide range of inverse

problems, in particular in the fields of imaging and image processing, and we try to cover

the most common ones. Beyond that, there also exist a lot of specialized approaches

for very specific inverse problems, e.g., for parameter identification in partial differential

equations [78], which we will not cover. This overview is therefore not complete. Besides,

we note that some approaches cannot be uniquely identified with one of the five categories.
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Accordingly, the classification of methods is partly subjective.

Special emphasis is placed on the achievable guarantees for the approaches within the

framework of regularization theory. In each of the five categories, we also point out the

aspects which are related to iResNets and analytic deep prior.

3.3.1 End-to-End Learning

The most straightforward way to solve inverse problems with neural networks is to train

them to map the data yδ directly to the ground truth x†. This strategy is often called

end-to-end learning. To do so, a training dataset of pairs (x†i , y
δ
i ) is needed, which is then

employed in a supervised training scheme

min
θ

1

N

N∑︂

i=1

L(φθ(y
δ
i ), x

†
i ), (3.3.1)

for a network architecture φθ : Y → X and a suitable loss function L.

Remark 3.3.1. The training objective (3.3.1) can also be analyzed from the Bayesian

point of view (Section 2.5). For this purpose x†i , y
δ
i are interpreted as realizations of

random variables X , Y . In case of a large number N of independent training samples,

the average of the loss function over i in (3.3.1) approximates the expectation value

EX ,Y L(φθ(Y),X ).

A common choice for the loss function is L(z, x) = ∥z − x∥2X . Then, the solution of

minφ EX ,Y L(φ(Y),X ) is the posterior expectation φ(yδ) = E(X|Y)(yδ) [2, Proposition 2].

In other words, end-to-end learning searches for a network φθ which maps yδ to the

conditional expectation value of the posterior distribution pX|Y .

Thus, an end-to-end trained model is likely to be an accurate solver for the inverse

problem, if there is enough training data and the model architecture is well-chosen. For

iResNets, which are also trained according to (3.3.1) but with a side constraint that

guarantees invertibility, we derived a similar result in [11, Lemma 4.2].

Still, with finitely many training samples there are settings in which naive end-to-

end learning fails due to a high variance of the training result [71]. This can happen in

particular with severely ill-posed problems and a low noise level δ, where the posterior

expectation E(X|Y) is itself (nearly) unstable and thus hard to learn.

In principle any network architecture φθ : Y → X could be used for the training

objective (3.3.1). In this section, the focus is on two very common approaches, namely

unrolled architectures and learned post-processing. Both of them provide ways to integrate

the forward operator A into the reconstruction process.

Unrolled Architectures. The idea of algorithm unrolling [74] (sometimes also called

unfolding) starts with choosing a classical iterative algorithm xk+1 = fiter(x
k) for solving

the inverse problem (Section 2.6). Then, fiter is implemented as a neural network layer

fθ, i.e., some parts of fiter are parametrized and made learnable. Finally, one chooses a

28



fixed number of iterations K (e.g., K = 10) and concatenates K layers to an architecture

φθ = fθ ◦ ... ◦ fθ.
The origin of algorithm unrolling for inverse problems is the so-called LISTA (learned

ISTA) architecture [50], which is based on the ISTA algorithm (Section 2.6)

xk+1 = Sλα

(︁
(Id− λA∗A)xk + λA∗yδ

)︁
. (3.3.2)

One then replaces the linear operations Id − λA∗A and λA∗ by learnable matrices W1

andW2 and implements the soft-thresholding function Sλα as an activation function. The

resulting layer is

fθ(x
k, yδ) = Sγ(W1x

k +W2y
δ) (3.3.3)

with the learned parameters θ = (W1,W2, γ), which are shared across all layers. For the

theory of analytic deep prior [7] in particular, the LISTA architecture plays a fundamental

role (Section 4.1).

The idea of LISTA can be further generalized in different ways. Using a different acti-

vation function corresponds to changing the proximal mapping [99]. The most commonly

used activation functions are in fact proximal mappings with respect to convex function-

als [32]. Besides, algorithm unrolling can also be applied to ADMM, as done in [111] for

compressive sensing in magnetic resonance imaging, to primal-dual methods, as done in

[109], or to time steps of diffusion equations, as done in [31].

For the Helsinki Deblur Challenge [10], we used the so-called learned gradient descent

(LGD) [1] (among others), which comes with several crucial advantages. In contrast to

LISTA, for LGD the proximal mapping is modeled as a subnetwork and the affine linear

part A∗(Axk − yδ) is left original. This way, the architecture has built-in knowledge of

the true forward operator. Besides, it is very natural to make the proximal mapping a

learnable function, because this is the part which is responsible for the regularization and

should thus highly depend on the (training) data. One further improvement is the use of

so-called memory channels (additional channels making the architecture wider and more

expressive). These are motivated by accelerated algorithms which make use of several of

the previous iterates to compute the next iterates.

When the spaces X and Y are fundamentally different (e.g., for CT problems), the

Learned Primal-Dual (LPD) algorithm [3] is particularly well-suited. The scheme

yk+1 = fθdk(y
k, Axk, yδ), (3.3.4)

xk+1 = gθpk(x
k, A∗yk+1), (3.3.5)

based on the primal-dual algorithm (Section 2.6), makes use of two different subnetworks.

Since the dual network fθdk acts on Y and the primal network gθpk acts on X, the scheme

is able to learn features in both spaces. LPD also makes use of memory channels (as

LGD) and the weights θpk , θ
d
k are individual for each iteration k = 1, ..., K, which further

increases the expressivity of the network. This type of architecture has frequently pro-
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duced outstanding results, e.g., for low-dose and sparse-angle CT reconstruction [65], and

we used it very successfully for the Helsinki Tomography Challenge [9].

Remark 3.3.2. Unrolled architectures have a long list of fundamental advantages. The

possibility of incorporating the forward operator A and a simple but effective training

setup often results in a high reconstruction quality. To achieve this, unrolled architectures

typically only require relatively few parameters [74]. Besides, the similarity to classical

iterative algorithms promotes the interpretability of the networks.

However, rigorous theoretical guarantees (like stability) are rare, since they require

hard restrictions on the architectures. We found iResNets as an adequate compromise

between stability and expressivity [12]. Furthermore, some works developed strategies to

enforce the subnetworks of unrolled architectures to behave like proximal mappings. In

[27], equivariant architectures are used to encode symmetries of the prior distribution. A

recent work [34] trains the subnetworks to mimic the proximal mapping of a simultane-

ously learned penalty term. Besides, [54] uses an LPD architecture for learning a model

correction of an incorrect forward operator A.

Learned Post-Processing. Classical algorithms are strong in terms of theoretical

guarantees but they show weaknesses when having to reconstruct natural-looking images.

CNNs, however, are particularly well-suited for imaging tasks like denoising or removing

artifacts. Thus, using a neural network to enhance the output of a classical reconstruction

algorithm is another promising way to combine traditional and deep learning methods.

Such approaches are sometimes distinguished from end-to-end learning since the neural

network fθ : X → X does not get the data yδ as input but is only used for post-processing.

But if one considers the classical algorithm T : Y → X to be part of the whole recon-

struction scheme φθ = fθ ◦ T , the training (3.3.1) is equivalent.

Post-processing methods are often applied for medical imaging, e.g., CT reconstruc-

tion. Two typical examples are [29], where an autoencoder network is used to enhance

FBP (filtered back projection) reconstructions of low-dose CT measurements (i.e., yδ con-

tains more noise than usual) and [112], where ART (algebraic reconstruction technique)

reconstructions from few-view CT measurements (i.e., yδ contains measurements of less

angles than usual) are enhanced by a small CNN. Further post-processing methods for

CT are listed and evaluated in [65]. For PET (positron emission tomography), another

medical imaging technique, [80] provides an extensive overview. The most commonly used

architectures are U-Nets [88]. For the Helsinki Tomography Challenge [9], we also used a

post-processing method (among others).

To obtain theoretical regularization guarantees, [91] introduced deep nullspace learn-

ing. This approach clearly separates the task of the classical reconstruction method and

the post-processing network, by restricting the latter to only act on the nullspace of A.

Thus, the classical method reconstructs the parts of x which are visible in the measure-

ments yδ and the network adds the components from the nullspace using prior information.

This way, data fidelity is guaranteed. For stability and convergence, the post-processing
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network must be Lipschitz continuous, a similar condition is fundamental in the context

of iResNets [8].

3.3.2 Plug-and-Play

In many classical iterative approaches for solving inverse problems, a proximal mapping

is responsible for the actual regularization (see Section 2.6). By recalling the definition

proxαR(z) = argmin
x∈X

1

2
∥x− z∥2 + αR(x), (3.3.6)

we observe that the proximal mapping corresponds to a variational regularization scheme

for a denoising problem, i.e., an inverse problem with A = Id. So-called plug-and-play

methods make use of this observation by replacing the proximal mapping in an iterative

scheme with general denoising algorithms.

The idea was first proposed in [107] for the ADMM algorithm (2.6.9), which becomes

xk+1 = argmin
x

1

2
∥Ax− yδ∥2 + ρ

2
∥x− zk + uk∥2,

zk+1 = Dθ(x
k+1 + uk),

uk+1 = uk + xk+1 − zk+1

(3.3.7)

if a denoiser Dθ : X → X replaces the proximal mapping. The same idea is also possible

for other iterative algorithms, e.g., proximal gradient descent

xk+1 = Dθ(x
k − λA∗(Axk − yδ)). (3.3.8)

The denoiser Dθ can, e.g., be modeled as a neural network [30]. To train it, only

a set of clean data samples {x†i} is necessary, the data yδ is only needed after training

in the iterative scheme. This way, plug-and-play algorithms are a clever combination of

modeling (the forward operator) and learning (the regularization). The main motivation

to use ADMM is that only a few iterations, and thus applications of Dθ, are often already

sufficient (Section 2.6). However, convergence of the plug-and-play iteration can only be

guaranteed under specific conditions on Dθ.

Remark 3.3.3. For the plug-and-play variant (3.3.8), which is based on proximal gradient

descent, theoretical guarantees can be quite easily derived. If the denoiserDθ is contractive

(i.e., Lip(Dθ) < 1) and the step size fulfills λ ⩽ 2∥A∥2, the iteration in (3.3.8) converges to

a unique fixed point (by the fixed-point theorem of Banach [110, Section IV.7]). Besides,

this fixed point depends Lipschitz continuously on yδ [42, Corollary 23].

Thus, with a contractive denoiser, one obtains existence, uniqueness, and stability of

solutions. Interestingly, for iResNets the exact same properties are also based on the

contractivity of specific network parts [8].

Many works have addressed the problem of obtaining a contractive or at least a non-
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expansive denoiser. In [105], it is proposed to project the weights of convolutional layers

to a certain bounded set to make the convolution nonexpansive. This projection step can

be included in the normal training routine to obtain a nonexpansive CNN. For convo-

lutional iResNets, we used a similar strategy [12]. A drawback of this approach is that

the expressivity of the network gets restricted too. A different approach uses the fact

that solution trajectories of ordinary differential equations (ODEs) will not deviate from

each other if the right hand side of the ODE is the negative of a monotone operator

[93]. By modeling this operator with a monotone neural network one obtains a learnable

nonexpansive mapping via the ODE. A possibility to put fewer restrictions on the net-

work architecture is applying a penalty functional on the gradient of the network during

training [82]. However, the gradient can only be evaluated on finitely many points, thus,

there is no guarantee that the resulting network is overall nonexpansive.

While plug-and-play methods are based on algorithms for variational minimization, for

a general denoiser Dθ there might exist no corresponding functional which is minimized.

The so-called regularization by denoising (RED) approach [87, 83] addresses this lack of

interpretability by defining a penalty term R(x) = ⟨x, x−Dθ(x)⟩. Under some conditions

on Dθ, the gradient of R fulfills ∇R(x) = x−Dθ(x) and can thus be used in any gradient-

based method for minimizing

1

2
∥Ax− yδ∥2 + αR(x). (3.3.9)

Alternatively, it is also possible to first model a penalty term Rθ with a neural network

architecture and then define Dθ = Id−∇Rθ to be a so-called gradient step denoiser [59].

In this setting, ∇Rθ being Lipschitz continuous is sufficient for at least obtaining some

weak results about convergence, e.g., ∥xk+1 − xk∥ → 0, but no rigorous regularization

properties [58, 104].

Obtaining strong theoretical guarantees while using really powerful denoisers remains

an open problem. Besides, plug-and-play algorithms can be quite slow in applications

because evaluating the denoiser is necessary in each iteration. However, due to the sep-

aration into a data fidelity part and a regularization part, the approach exhibits high

flexibility and interpretability.

3.3.3 Learned Penalty Terms

Variational regularization methods (Section 2.4) are highly interpretable and provide

strong theoretical guarantees. For a successful application in practice the choice of the

penalty functional, encoding the prior knowledge about the ground truth data, is crucial.

This task can be solved with deep learning by modeling the penalty term Rθ : X → R
as a neural network. It has to be trained to output small values for clean ground truth

samples x† and large values for any kind of disturbed inputs. After training, Rθ can be
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applied in a variational scheme like

min
x∈X

1

2
∥Ax− yδ∥2 + αRθ(x) (3.3.10)

to solve inverse problems.

Remark 3.3.4. A learned penalty term is a very close connection between deep learning

and the classical regularization theory. However, to also obtain the theoretical guarantees

from Section 2.4, Rθ has to fulfill the assumptions of Theorem 2.4.6, 2.4.7 and 2.4.8. Most

common neural network architectures are already continuous, thus, the crucial property

is strong convexity of Rθ. If this is fulfilled, then Rθ is also weakly lower semicontinuous,

coercive, and bounded from below. With these properties, the learned regularization

method exhibits theoretical guarantees about the existence, uniqueness, stability, and

convergence of solutions.

There are several different strategies for the training of Rθ. The so-called adversarial

regularizer [70] is trained to penalize reconstructions of a pseudo-inverse A†, which usually

contain artifacts due to insufficient regularization. In each training step, one randomly

chooses a ground truth sample x†i and a data sample yδj and, additionally, one random

point ξ on the line between x†i and A
†yδj . Then, one gradient step w.r.t.

Rθ(xi)−Rθ(A
†yδj ) + µ·(∥∇Rθ(ξ)∥ − 1)2 (3.3.11)

is performed. The last term ensures that Rθ has a Lipschitz constant of approximately

one. Thus, the magnitude of the gradient of Rθ is technically fixed and the training

focuses more on optimizing the direction of the gradient.

To obtain provable regularization properties, [76] introduced the adversarial convex

regularizer (ACR), which uses an input-convex neural network for Rθ. This way, it is pos-

sible to learn a strongly convex penalty functional that guarantees existence, uniqueness,

stability, and convergence of solutions (see Remark 3.3.4). However, due to the archi-

tecture constraints, the ACR shows a slightly worse reconstruction performance than its

nonconvex variant in numerical experiments.

It is also possible to combine an adversarial regularizer Rθ with end-to-end training

[75]. An unrolled architecture φθ̃ is trained to map yδ to the minimizer of the variational

formulation (3.3.10), while Rθ is adversarially trained in the same time to distinguish

between real ground truth data x† and network outputs φθ̃(y
δ). This way, the high

interpretability of variational regularization can be combined with the fast evaluation of

end-to-end trained architectures.

Another idea is called NETT (network Tikhonov) [66], where the goal is to obtain a

coercive penalty term, which is sufficient for some weak regularization properties. For this

purpose, Rθ = Ψ ◦ Eθ is defined as the concatenation of a predefined coercive functional

Ψ: Z → R and a neural network Eθ : X → Z with some latent space Z. As the adversarial

regularizer, Rθ is also trained using clean ground truth samples x†i and reconstructions of
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a pseudo-inverse A†yδj . One possible sufficient condition to ensure coercivity of Rθ is to

use a network Eθ which is stably invertible, e.g., an iResNet [8].

Alternatively, one can also define Rθ(x) = Ψ(Eθ(x)) +
γ
2
∥x − Dθ(Eθ(x))∥2, which is

called augmented NETT [79]. Here, Eθ and Dθ act as encoder and decoder network.

With a coercive functional Ψ and a Lipschitz continuous Dθ (with arbitrary Lipschitz

constant), Rθ is guaranteed to be coercive.

A different possible strategy for training Rθ is called bilevel optimization, which is,

e.g., applied in [43]. This approach requires paired data (x†i , y
δ
i ) and aims to solve

min
θ

1

N

N∑︂

i=1

∥xδθ,i − x†i∥2

s.t. xδθ,i = argmin
x∈X

1

2
∥Ax− yδi ∥2 +Rθ(x).

(3.3.12)

However, one major difficulty is that the dependence of xδθ,i on the network parameters

θ is only implicitly defined via a minimization problem. A similar bilevel optimization

problem is faced in the analytic deep prior approach [7].

As plug-and-play methods (Section 3.3.2), learned penalty terms also have the poten-

tial to provide strong theoretical guarantees, high interpretability, and flexibility w.r.t.

changes in the forward operator A or noise level δ. However, their application can be

quite slow since (3.3.10) has to be solved iteratively, and theoretical guarantees are only

valid if appropriate restrictions are put on Rθ.

3.3.4 Learning Without Training Data

So far, we discussed deep learning algorithms which learn how to regularize an inverse

problem from a given training data set. Such approaches are successful if the underlying

neural network is able to extract useful information from the training data. However, [64]

observed that, even without training, convolutional network architectures encode prior

knowledge about natural-looking images pretty well. This section is about reconstruc-

tion methods which solve inverse problems using neural networks for regularization but

no kind of training data (in particular no ground truth samples). Instead, the regular-

ization abilities of such approaches are purely due to inherent properties the network

architectures.

The so-called deep image prior (DIP) [64] approach can be formulated as

min
θ

1

2
∥Aφθ(z) + yδ∥2, (3.3.13)

where φθ : Z → X is a CNN and z is a random input from a latent space Z. We note that

(3.3.13) looks quite similar to variational regularization (Section 2.4) but with no explicit

penalty term. Instead, the regularization of DIP is based on the observation that CNNs

can approximate clean natural images faster than noisy images. Thus, (3.3.13) is usually
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solved iteratively with early stopping (Section 2.6) to avoid overfitting. DIP is trained for

each data sample yδ separately. After optimization, the solution is x = φθ(z). However,

it is therefore quite slow in application.

An easy adaption of DIP is adding an additional penalty term R : X → R∪ {∞}, i.e.

min
θ

1

2
∥Aφθ(z) + yδ∥2 + αR(φθ(z)). (3.3.14)

Since DIP is mainly applied to imaging problems, TV regularization is particularly suit-

able [67]. In CT reconstruction, this approach showed a performance between data-driven

deep learning methods and classical reconstruction methods (TV and FBP) [65]. Besides,

[72] proposed to combine DIP with the RED penalty term (Section 3.3.2). As [15] showed,

it is also possible to obtain analogous theoretical regularization properties as with vari-

ational regularization, dependent on R. However, the parameter α is typically chosen

quite small in this setting since the architecture φθ itself contributes significantly to the

regularization. Thus, the level of stability which can be guaranteed might be rather low

(Theorem 2.4.7).

Another way for obtaining regularization properties is the analytic deep prior [41]

approach. There, φθ is considered to have a LISTA architecture (Section 3.3.1) in order

to exploit the parallels between unrolled architectures and iterative methods for solving

variational minimization problems. I developed a complete regularization theory for this

approach in [7]. More detailed information is provided in Section 4.1.

To increase the speed of the DIP evaluation, [18] proposed to pretrain the network

φθ before solving (3.3.13), called educated DIP. More precisely, φθ is trained end-to-end

(Section 3.3.1) on a synthetic dataset (x†i , y
δ
i ) to avoid the need for real data. Thus,

instead of a random input z, the data yδ is now fed into the network. This leads to a

significant increase of speed and a slight performance boost in comparison to standard

DIP. Alternatively, the approach of performing DIP after an end-to-end training can be

interpreted as a guarantee for data consistency of φθ. We made use of this in the Helsinki

Deblur Challenge [10].

A further difficulty in the application of DIP is to apply early stopping at the right

moment. To address this, [94] analyzed the so-called spectral bias of convolutional layers,

i.e., the property that low-frequency parts of an image are fitted faster than high-frequency

parts. This spectral bias can be controlled by putting a Lipschitz constraint on the

convolutions, similar to the strategy in iResNets [8]. By doing so, the overfitting can be

delayed or even avoided, such that the right moment for stopping becomes less critical.

The ability of a CNN φθ to approximate certain images x ∈ X better than others can

also be encoded as a penalty functional R on X [51]. In other words, R(x) is defined in

a way that it has small values for images x that can be generated easily by φθ (i.e., with

bounded weights and small inputs of all network layers) and larger values for images that

are harder to generate. By proving weak lower semicontinuity and coercivity of R, some

weak regularization properties are obtained.
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3.3.5 Generative Models

From the Bayesian point of view (see Section 2.5) there exists a whole (conditional)

distribution pX|Y of possible solutions x for the inverse problem Ax = y. So instead of

just computing one possible solution, one could try to recover more information about

the posterior distribution. Access to pX|Y (or an approximation of it) would be useful

for several purposes, e.g., sampling from the posterior, computing Bayesian estimators

like the posterior mean value, and computing uncertainties of the reconstruction via the

variance of the posterior distribution. As in Section 2.5, we consider X and Y to be finite

dimensional for simplicity.

For learning pX|Y , so-called generative models can be used. Such approaches are able to

produce new samples that are similar to the data on which they were trained (e.g., natural-

looking images). In other words, they learn to sample from the probability distribution

of the training data. Some models are also able to estimate the probability of a given

sample w.r.t. this probability distribution.

Remark 3.3.5. There are two main ways to solve inverse problems using generative

models. First, there is the “unconditional” approach, where the model is trained to

learn the prior distribution. This can be done unsupervised since only samples x from

pX are needed. After learning the prior, the generative model is combined with a data

discrepancy term (e.g., ∥Ax − yδ∥2) to sample from the posterior distribution. How

this can be done exactly depends on the particular model one uses. Second, there is

the “conditional” approach, where the generative model is directly trained to learn the

posterior distribution. This is typically achieved via supervised training. The generator

gets yδ as input and then produces samples x conditioned on yδ.

The field of generative modeling is very broad and there are many different deep

learning approaches. This section can only give a small insight, we therefore focus on

a few popular methods. In the following, the concepts of normalizing flows, generative

adversarial networks, and score-based diffusion are briefly presented.

A normalizing flow [103, 102] is an invertible mapping φ : X → X between the target

distribution (with unknown pdf p : X → R) and a simple baseline distribution (with

known pdf q : X → R, usually Gaussian). If φ maps an element x ∼ p to φ(x) ∼ q, the

pdf of the target distribution can be computed using the change of variables formula

p(x) = q(φ(x))·|det(Dφ(x))|. (3.3.15)

This result can be used to learn the unknown distribution of a given training dataset {xi}.
By making φ learnable, i.e., using a neural network φθ, the pdf p = pθ becomes learnable.

Then, φθ can be trained to maximize the log-likelihood

max
θ

∑︂

i

log(q(φθ(xi)) + log(|det(Dφθ(xi))|) (3.3.16)
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of the data xi w.r.t. pθ. After training, the inverse φ−1
θ can be applied to samples z ∼ q

from the baseline distribution to generate new samples φ−1
θ (z) ∼ pθ. Thus, invertible neu-

ral networks are needed for this purpose. A very common type of invertible architectures

are so-called coupling layers, introduced in [40]. Alternatively, iResNets [8] can also be

employed.

Normalizing flows can be used in an unconditional or a conditional approach (see

Remark 3.3.5) for solving inverse problems. In [14], a normalizing flow φθ is trained on a

dataset of ground truth samples {x†i} to learn the prior distribution. After training, one

solves the variational problem

min
z

∥Aφ−1
θ (z)− yδ∥2 + α∥z∥2 (3.3.17)

for given yδ, and φ−1
θ (z) parametrizes the solution of the inverse problem. However, for

high-dimensional imaging problems, mapping the full prior distribution to a simple base-

line distribution q can be difficult. To overcome this, [5] proposed to train the normalizing

flow only on small image patches. Another advantage of this is that only a few training

images x†i are needed because every image contains a lot of different patches.

If paired data {yδi , x†i} are given, one can directly learn the posterior distribution with

a conditional normalizing flow [106]. For this purpose, φθ gets yδ as an additional input,

i.e., φθ(x, y
δ) = z and x = φθ(·, yδ)−1(z). It is also possible to transform the conditional

input yδ first. This is proposed by [38] for CT reconstruction, where the normalizing flow

is conditioned on the FBP reconstruction of the data.

The idea of generative adversarial nets (GANs) [48] is to learn a generator G : Z → X

which receives random inputs z ∼ q (q being a simple baseline distribution), and whose

outputs G(z) can hardly be distinguished from the target distribution p. For this purpose,

a second model D : X → [0, 1] is introduced whose task is to estimate the probability that

a given sample x is not generated by G but a true sample from p. These two models are

trained simultaneously but compete with each other. This is expressed in the min-max-

problem

min
G

max
D

Ex∼p

(︁
log(D(x))

)︁
+ Ez∼q

(︁
log(1−D(G(z))

)︁
, (3.3.18)

where D “tries to distinguish” between x and G(z) while G “tries to fool” D. In practice,

the samples x are drawn from a training dataset {xi}, and z is randomly sampled from q

during training. An overview of theory, possible applications, and architectures for GANs

can be found in [33].

To solve inverse problems, an unconditional GAN can be trained to learn the prior

distribution, and the generator G is then used to parametrize the solution as G(z) [22, 92].

This way, the solution is restricted to the range of G and it is possible to further regularize

with a penalty on z. GANs can also be made conditional by making both G and D

additionally dependent on a further variable y [73]. If paired training data {x†i , yδi } are

given, one can thus learn the posterior distribution with a conditional GAN [35].

In recent years, score-based diffusion models (SDMs) have received a lot of attention
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for achieving state-of-the-art performance in image synthesis [39]. Their idea is to consider

probability distributions pt for t ∈ [0, T ] which arise from the target distribution p = p0

being gradually blurred with a diffusion process. Since diffusion has the effect of equal-

izing differences, the possibly complicated initial distribution p0 becomes smoother with

growing t until finally, pT is assumed to be approximately a Gaussian distribution. Then,

by inverting the diffusion process, one obtains a generator for the target distribution p

[96]. Mathematically, the diffusion process can be modeled with a stochastic differential

equation (SDE) and there also exists an SDE which models the reverse diffusion [98, 6].

However, one important part of the reverse SDE is the so-called score function

∇x log(pt(x)). (3.3.19)

This means, for inverting the diffusion process one needs specific knowledge about the

distributions pt. Since the score function is typically unknown, one has to train a neural

network sθ(x, t) to approximate ∇x log(pt(x)) via the so-called denoising score matching

technique [108]. The trained network and a solver for the reverse SDE then form a

generative model for sampling from p.

To solve inverse problems with unconditionally trained SDMs, one has to learn the

score function of the prior distribution first. After this, there are several approaches to

integrate the conditional dependence on yδ into the reverse diffusion process to be able to

sample from the posterior distribution [97, 45, 17, 95]. Alternatively, one can directly use

the learned score function sθ in a gradient descent iteration corresponding to a variational

formulation, even with some theoretical properties about the convergence of the iterates

[46]. If paired training data {x†i , yδi } is given, sθ can be conditioned on yδ in order to

directly learn the conditional score function of the posterior distribution [16].

Remark 3.3.6. In the Bayesian setting, an inverse problem is called well-posed if the

properties existence, uniqueness, and stability (Section 2.2) hold for the whole poste-

rior distribution pX|Y [77]. In contrast to Definition 2.1.1 (Hadamard), this means that

Bayesian well-posedness does not only depend on the forward operator A but also on

the prior distribution pX . Thus, the desired theoretical guarantees for Bayesian recon-

struction algorithms are different and of a rather statistical nature. For example, in [62]

a learned iterative algorithm creates a Markov chain which provably converges to some

stationary distribution which is close to the true posterior distribution.
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Chapter 4

Regularization Theory for Special

Architectures

The aim of this chapter is to introduce my own work regarding deep learning methods

with regularization guarantees and to relate it to the current state of research. I partic-

ularly studied the regularization properties of two specific approaches, i.e., analytic deep

prior and iResNets. The intention behind this research is to increase the trustability and

interpretability of neural networks and to enhance their understanding from a theoretical

point of view. Besides, I also focused on the practical application of deep learning ap-

proaches in order to gain more insights into the reasons for the success of neural networks

in solving inverse problems. This has been a crucial part of the two Helsinki deep learning

challenges.

However, attempting to develop deep learning methods with state-of-the-art recon-

struction performance and provable regularization properties at the same time typically

results in a conflict of interest. On the one hand, large and expressive architectures are

needed, preferably unrestricted in their abilities to learn. On the other hand, small ar-

chitectures with additional assumptions, conditions, restrictions, or a special structure

provide more and easier possibilities for theoretical analyses.

The research of my PhD is about finding an appropriate compromise with the best of

both worlds. As the overview in Section 3.3 shows, there already exist a lot of different

strategies attempting to do so. But most approaches that are not severely restricting the

expressivity of the architecture do not achieve strong theoretical guarantees like stability

(in the sense of Lipschitz continuity).

Analytic deep prior provides a possible explanation for the inherent regularization

abilities of neural networks. With iResNets, we introduced a powerful architecture with

provable regularization properties. In the following, we describe both approaches and the

findings of the Helsinki challenges in more detail and explain their relations to each other

(in a narratively meaningful order). We use the notation of Chapter 2 for the inverse

problem setting.
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4.1 Analytic Deep Prior

Among all deep learning methods for solving inverse problems, deep image prior (DIP,

Section 3.3.4) takes on a special role since it relies on a neural network, but it does not

make use of any training data. The authors of [41] described this phenomenon with the

apposite term regularization by architecture. Naturally, it raises the question of how a

neural network actually regularizes if no prior information (Section 2.2) has been learned

from data. Most explanations from the literature of this observation are based on the

approximation capabilities of CNNs, as elaborated in Section 3.3.4. Alternatively, it

is possible to consider architectures with a special structure which allows for a deeper

theoretical analysis. We thus consider DIP with a LISTA (Section 3.3.1) architecture.

The reason for this choice is that LISTA is based on an iterative algorithm (Section 2.6)

for solving variational minimization problems, which provides a connection to the classical

regularization theory.

For analytic deep prior (ADP), the crucial idea is to interpret the output of the

LISTA network as the solution of a variational regularization scheme (Section 2.4). The

details of establishing and exploiting this connection are described in [41], where ADP

was introduced first, and also in [7]. Essentially, the neural network of DIP is replaced by

a variational approach, resulting in the formulation

min
B∈L(X,Y )

1

2
∥Ax(B)− yδ∥2

s.t. x(B) = argmin
x∈X

1

2
∥Bx− yδ∥2 + αR(x)

(4.1.1)

for some penalty term R : X → R ∪ {∞}.
Instead of an abstract neural network parameter θ, we have now a linear operator

B ∈ L(X, Y ) which parametrizes the solution x(B) of ADP. This way, we deviate quite a

bit from the original DIP formulation (3.3.13) but we managed to transform the theoretical

idea of regularization by architecture into a concrete variational regularization scheme.

ADP can thus be seen as a demonstration of how classical regularization theory can be

used to explain specific phenomena of deep learning.

Using an additional constraint on the SVD (Theorem 2.3.1) of B, some first theoretical

results for ADP were achieved in [41]. In [7], we managed to abolish this constraint and

derived an equivalence of the bilevel optimization problem (4.1.1) to

min
x∈X

1

2
∥Ax− yδ∥2

s.t. ∃v ∈ ∂R(x) : α⟨v, x⟩ ⩽ ∥yδ∥2
4

.

(4.1.2)

This way, we obtained a simpler convex optimization problem, where the solution x is

no longer dependent on the operator B. Based on this, a complete regularization theory

with existence, stability, and convergence of solutions can be developed for ADP.
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Besides, [7] also introduces the variant ADP-β, addressing the fact that DIP mostly

uses an early stopping strategy (Section 2.6). For this purpose, (4.1.1) is modified with

an additional penalty term on the operator B. By proving the existence, stability, and

convergence of solutions also for ADP-β, we provide a regularization theory for this case

as well.

4.2 The Deblurring and Tomography Challenges

In 2021 and 2022 the Finnish Inverse Problems Society1 organized the Helsinki Deblur

Challenge (HDC2021) and the Helsinki Tomography Challenge (HTC2022). Both chal-

lenges were about solving ill-posed inverse problems with real physical measurements.

Scientists and research groups from all over the world could participate and develop re-

construction algorithms for the given tasks. For this purpose, the organizers also provided

some samples of ground truth and measurements as training data. In the end, all submit-

ted methods were evaluated on new data that was unknown to the participants. Regarding

the ill-posedness, the tasks were posed with several levels of difficulty in order to create a

ranking of the participating algorithms and to determine a winner.

The subject of the HDC2021 was the inversion of a blurring caused by a camera

which is out of focus. Each of the pictures taken displayed three lines of letters, which

were increasingly difficult to recognize, dependent on the extent of the blurring. This

was divided into 20 levels of difficulty, examples can be seen in Figure 4.1. For rating

the reconstruction quality, a character recognition software had to identify as many as

possible letters on the deblurred images correctly.

Figure 4.1: Examples of data pairs from the HDC2021. All pictures are taken with
a real camera, which was correctly focused for the ground truth images (top row)
and moved gradually out of focus for the blurred images (bottom row).

The HTC2022 was about CT reconstruction of circular acrylic disks from limited angle

measurements (Figure 4.2). All disks were of the same size but had a different number of

holes with variable shapes inside. This inner structure had to be reconstructed. In the

first of seven difficulty levels, only measurements from a 90◦ rotation inside the scanner

were provided. This view was reduced to 30◦ for the last level, making the problem

increasingly ill-posed.

1https://www.fips.fi/
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Figure 4.2: Measurement setting of the HTC2022. The goal is to reconstruct the
inner structure of circular acrylic disks from limited angle measurements of a fan-
beam CT scanner. Adapted from https://fips.fi/HTC2022.php.

For both of the challenges, we submitted several algorithms, respectively. Our main

approaches were end-to-end trained unrolled neural networks (Section 3.3.1) which in-

corporated the forward operator of the problem. In addition, we tested models with

slightly more theoretical foundation. We deployed an educated DIP (Section 3.3.4) as

postprocessing for an end-to-end trained CNN in order to guarantee data fidelity, in the

HDC2021. For the HTC2022, we used a hybrid approach consisting of an initial classical

reconstruction followed by a deep learning based inpainting of missing details which could

not be reconstructed from the limited angle measurements. More details are described in

[10] and [9]. We achieved the fourth place in the HDC2021 and the second place in the

HTC2022.

While theoretical guarantees for the submitted algorithms were not required at all,

some ideas from regularization theory still proved to be highly beneficial. Prior knowledge

(Section 2.2) about the challenge data emerged as the most important issue. For high

performance in the more difficult levels, the models needed to learn the features (readable

letters and disc-shaped objects with holes) of the ground truth data precisely. Thus, a

pure DIP approach turned out to be suboptimal, because its intrinsic regularization is

more suitable for generic image textures than for very specific structures such as letters

and discs. Since only a few samples of ground truth were provided for training, using

synthetic data was a very advantageous strategy. Besides, a certain robustness of the

algorithms was required because, as announced in advance, the evaluation data differed

slightly from the training data (e.g., numbers in addition to the letters).

The challenges were open for solution algorithms of all types. Unsurprisingly, deep

learning methods showed a clearly superior performance in comparison to classical ap-

proaches. In both challenges, the first places went to end-to-end trained architectures.

For methods with theoretical guarantees, however, it was hard to compete.
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4.3 Invertible Residual Networks

Since end-to-end learning has shown a remarkable performance in the two deep learning

challenges (Section 4.2), it would be highly desirable to find such an approach with the-

oretical regularization guarantees. Our natural idea for addressing inverse problems is

to employ invertible neural networks φθ. So far, these kinds of architectures have been

applied, e.g., as normalizing flows for generative modeling (Section 3.3.5). We want to use

them for approximating the forward operator A with φθ and solving the inverse problem

with φ−1
θ . As our architecture, we choose invertible residual networks (iResNets) [20] due

to their specific properties (as explained in the following).

The idea of a residual network

φθ = Id− fθ (4.3.1)

is to learn deviations from the identity mapping. On its own, the identity is of course

invertible. If the deviation fθ is restricted to be sufficiently small, the invertibility is

preserved. Precisely, we need fθ to be contractive, i.e., Lip(fθ) ⩽ L for a Lipschitz

constant L < 1. Under this condition, we can compute the inverse x = φ−1
θ (z) with the

fixed point iteration

xk+1 = z + fθ(x
k), (4.3.2)

which converges due to the fixed-point theorem of Banach [110, Section IV.7]. Further,

we can estimate the Lipschitz constant of the inverse network as Lip(φ−1
θ ) ⩽ 1

1−L
. More

technical details are explained in [8, 11].

Our first paper [8] is about how to guarantee regularization properties (Section 2.2)

for iResNets. Existence and uniqueness of solutions are trivial for end-to-end trained

networks, which directly output the reconstruction. Stability is implied by the Lipschitz

continuity of φ−1
θ . As with DIP and analytic deep prior, we thus have a regularization by

architecture (Section 4.1). The convergence property, however, depends on the success

of the training. In analogy to minimum-norm solutions in Section 2.1 or R-minimizing

solutions in Section 2.4, for iResNets, the solutions x are required to fulfill a so-called

local approximation property, i.e., φθ(x) approximates Ax for L → 1. Accordingly, the

convergence of solutions is related to the data consistency of the trained network. The

Lipschitz constant L can be interpreted as a regularization parameter. Similar to the

parameter α of variational regularization schemes in Theorem 2.4.7, L also controls the

amount of stability of φθ. For specific small architectures, we showed that iResNets are

even equivalent to certain variational reconstruction methods.

In our second paper [11], we analyzed iResNets from the Bayesian perspective (Sec-

tion 2.5). Note that we consider X and Y to be finite dimensional for this purpose in

order to simplify the use of probability density functions. However, all results apply in-

dependently of the choice of discretization, and the regularization properties from the

previous paper are not affected. We particularly compare two different training strategies
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for φθ. The first approach aims to achieve φθ ≈ A via the training objective

min
θ

∑︂

i

∥φθ(x
†
i )− yδi ∥2 (4.3.3)

for a dataset of pairs (x†i , y
δ
i ), and is thus called approximation training. Due to the

architecture constraint, φ−1
θ is a regularization scheme for the inverse problem, but we

showed that φθ learns only few information about the prior distribution of the data. More

precisely, if the problem is decomposed into one-dimensional subproblems using the SVD

of A (as in Section 2.3), the expected outcome φθ of the training always shows the same

affine linear behavior, only depending on the mean of the prior distribution. This is

suboptimal for a data-driven regularization, as there is more prior knowledge which could

be learned. The second training strategy aims at φ−1
θ (yδ) ≈ x† via the objective

min
θ

∑︂

i

∥φ−1
θ (yδi )− x†i∥2. (4.3.4)

This approach is called reconstruction training and corresponds to common end-to-end

learning (Section 3.3.1). We showed that this way of training leads to a stable approxi-

mation of the conditional expectation E(X|Y) of the posterior distribution.

Finally, we demonstrate the practical performance of iResNets on real imaging in-

verse problems in our third paper [12]. For this purpose, we concatenate several blocks

of the form (4.3.1) to a larger iResNet architecture. Furthermore, we slightly general-

ize the theoretical results of the previous articles in order to address nonlinear inverse

problems too. For the numerical experiments, we consider a deblurring problem and a

nonlinear diffusion. In comparison to other end-to-end trained deep learning methods, the

iResNet emerges to be competitive but more elaborate in training. On the one hand, this

demonstrates that deep learning with regularization guarantees and high reconstruction

performance is possible. On the other hand, the Lipschitz constraint still causes a reduc-

tion of the expressivity of iResNets and a significantly higher computational complexity.

However, in comparison to plug-and-play methods (Section 3.3.2), where contractivity is

required for the full architecture in order to obtain guarantees, it is advantageous that

only the subnetworks fθ have to be constrained. Regarding interpretability, we compare

the forward pass of the trained network φθ with the true forward operator numerically.

By analyzing the disparities between those two mappings, it is possible to investigate how

the network has learned to regularize the inverse problem.

In summary, iResNets provide a deep learning based reconstruction scheme for inverse

problems with strong provable regularization properties. Additionally, the approach is

highly interpretable due to the invertibility of the architecture and shows excellent per-

formance in practical applications. Among the large variety of reconstruction methods

for inverse problems, this combination of features is still quite rare.
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Chapter 5

Conclusion and Outlook

The core of this thesis is the proof of regularization properties of certain deep learning

based reconstruction methods and their successful application to solve inverse problems.

With analytic deep prior we obtain a link between neural networks and classical varia-

tional regularization, providing an explanation of the phenomenon of regularization by

architecture. In addition, as the results of the Helsinki deep learning challenges show,

learning extensive prior information about the ground truth from suitable training data

is also of great importance to achieve a problem-specific regularization. Both ideas are

combined in iResNets, which can be trained via end-to-end learning and have a hyper-

parameter for controlling the Lipschitz constant (i.e., the stability) of the reconstruction

scheme.

The results of the thesis primarily show that deep learning for inverse problems so

far requires a compromise between practical performance and theoretical regularization

guarantees. In order to increase the interpretability and the possibilities for theoreti-

cal analyses of an architecture, it is often necessary to restrict its expressivity. Yet, as

iResNets demonstrate, reconstruction quality at almost state-of-the-art level is also pos-

sible with rigorous regularization properties. The computational complexity, however, is

higher in comparison to other approaches without architectural constraints. It is therefore

sometimes more practical to choose methods which are just fast and easy to implement.

With regard to the nature of architectural constraints, it is noticeable that Lipschitz

continuity is not only crucial for iResNets but also for other types of approaches, e.g.,

plug-and-play methods for guaranteeing convergence and stability. Thus, further research

about effectively restricting the Lipschitz constant of neural networks would be beneficial.

Besides, it would be desirable to develop further reconstruction methods with provable

regularization properties. Most approaches have specific advantages and disadvantages,

which affect the type of application they are suitable for. In order for methods with

regularization guarantees to become established in practice, they must catch up in terms

of reconstruction performance and computational complexity.
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List of Symbols

Frequently used variables:

X, Y - The spaces of “causes”/“ground truths” and “effects”/“data”
A - Forward operator A : X → Y

x†, y†, yδ - Ground truth, clean data, and noisy data
δ - Noise level
A† - Moore-Penrose inverse of A

T , Tα - A reconstruction algorithm (mapping from Y to X)
(uk, vk, σk) - Singular value decomposition of A

α - Regularization parameter
L - Lipschitz constant (for iResNets)
rα - Filter functions for spectral regularization
R - Penalty term R : X → R ∪ {∞} for variational regularization

X , E , Y - Random variables representing ground truth, noise, and (noisy) data
pX - Probability density function of X
φθ - Neural network with (learnable) parameter θ
L - Loss function for training of neural networks

Mathematical symbols and notation:

∥ · ∥ - Standard Norm of the space of which the argument is from
∥ · ∥1 - Norm of L1 or ℓ1

xk → x - The sequence (xk) converges to x
xk ⇀ x - The sequence (xk) converges weakly to x
A∗ - Adjoint of the operator A
Id - Identity operator, Idx = x

⟨ · , · ⟩ - Inner product of a Hilbert space
R(A) - Range of the operator A
N (A) - Nullspace of the operator A
U⊥ - Orthogonal complement of a subspace U in a Hilbert space
⊕ - Direct sum of two orthogonal subspaces
U - Closure of a subset U in some space

Lip(·) - Lipschitz constant of a function or an operator
k ∗ x - Convolution of the functions k and x
∂i - Partial derivative w.r.t. the i-th component
∂R - Subdifferential of a convex functional R

D, Du - Derivative of a function (w.r.t. a certain argument u)
∇ - Gradient of a function or of a functional

proxR - Proximal mapping of a functional R
det - Determinant of a matrix

L(X, Y ) - Space of bounded linear operators from X to Y .
Lp - Lebesgue space of p-integrable functions
H1 - Sobolev space where the weak derivatives of first order are in L2

C, C1 - Space of continuous (cont. differentiable) functions
C1

0 - C1-functions with compact support
E(·), E(·|·) - Expectation value and conditional expectation
X ∼ p - The random variable X is distributed according to p.
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Vieweg+Teubner Verlag Wiesbaden, 1st edition, 2003.

[86] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

[87] Y. Romano, M. Elad, and P. Milanfar. The little engine that could: Regularization by Denoising

(RED). SIAM Journal on Imaging Sciences, 10(4):1804–1844, 2017.

[88] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image

segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors, Medical Image

Computing and Computer-Assisted Intervention - MICCAI 2015, volume 9351, pages 234–241,

2015.

[89] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.

Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

[90] T. Schuster, B. Kaltenbacher, B. Hofmann, and K. S. Kazimierski. Regularization Methods in

Banach Spaces. De Gruyter, Berlin, Boston, 2012.

[91] J. Schwab, S. Antholzer, and M. Haltmeier. Deep null space learning for inverse problems: conver-

gence analysis and rates. Inverse Problems, 35(2), 2019.

[92] V. Shah and C. Hegde. Solving linear inverse problems using GAN priors: An algorithm with

provable guarantees. In 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 4609–4613, 2018.

[93] F. Sherry, E. Celledoni, M. J. Ehrhardt, D. Murari, B. Owren, and C.-B. Schönlieb. Designing stable

neural networks using convex analysis and ODEs. Physica D: Nonlinear Phenomena, 463:134159,

2024.

[94] Z. Shi, P. Mettes, S. Maji, and C. G. M. Snoek. On Measuring and Controlling the Spectral Bias

of the Deep Image Prior. International Journal of Computer Vision, 2022.

[95] I. R. Singh, A. Denker, R. Barbano, Z. Kereta, B. Jin, K. Thielemans, P. Maass, and S. Arridge.

Score-based generative models for PET image reconstruction. Machine Learning for Biomedical

Imaging, 2:547–585, 2024.

[96] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning

using nonequilibrium thermodynamics. In F. Bach and D. Blei, editors, Proceedings of the 32nd

International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning

Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

[97] Y. Song, L. Shen, L. Xing, and S. Ermon. Solving inverse problems in medical imaging with

score-based generative models. In International Conference on Learning Representations, 2022.

[98] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gener-

ative modeling through stochastic differential equations. In International Conference on Learning

Representations, 2021.

52



[99] P. Sprechmann, A. M. Bronstein, and G. Sapiro. Learning efficient sparse and low rank models.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9):1821–1833, 2015.

[100] A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 19:451–559, 2010.

[101] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing

properties of neural networks. Preprint, arXiv:1312.6199, 2014.

[102] E. G. Tabak and C. V. Turner. A family of nonparametric density estimation algorithms. Com-

munications on Pure and Applied Mathematics, 66(2):145–164, 2013.

[103] E. G. Tabak and E. Vanden-Eijnden. Density estimation by dual ascent of the log-likelihood.

Communications in Mathematical Sciences, 8(1):217 – 233, 2010.

[104] H. Y. Tan, S. Mukherjee, J. Tang, and C.-B. Schönlieb. Provably convergent plug-and-play quasi-

Newton methods. SIAM Journal on Imaging Sciences, 17(2):785–819, 2024.

[105] M. Terris, A. Repetti, J.-C. Pesquet, and Y. Wiaux. Building firmly nonexpansive convolutional

neural networks. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 8658–8662, 2020.

[106] B. L. Trippe and R. E. Turner. Conditional density estimation with bayesian normalising flows. In

NeurIPS Workshop on Bayesian Deep Learning, 2017.

[107] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. Plug-and-play priors for model based

reconstruction. In 2013 IEEE Global Conference on Signal and Information Processing, pages

945–948, 2013.

[108] P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation,

23(7):1661–1674, 2011.

[109] S. Wang, S. Fidler, and R. Urtasun. Proximal deep structured models. In D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems,

volume 29. Curran Associates, Inc., 2016.

[110] D. Werner. Funktionalanalysis. Springer Spektrum Berlin, Heidelberg, 8th edition, 2018.

[111] Y. Yang, J. Sun, H. Li, and Z. Xu. Deep ADMM-Net for compressive sensing MRI. In D. Lee,

M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 29. Curran Associates, Inc., 2016.

[112] J. Zhao, Z. Chen, L. Zhang, and X. Jin. Few-view CT reconstruction method based on deep learning.

In 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature

Semiconductor Detector Workshop (NSS/MIC/RTSD), pages 1–4, 2016.

[113] S. Zheng, Y. Song, T. Leung, and I. Goodfellow. Improving the robustness of deep neural net-

works via stability training. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4480–4488, 2016.

53



Part II

Publications





Inverse Problems

Inverse Problems 38 (2022) 115005 (21pp) https://doi.org/10.1088/1361-6420/ac9011

Regularization theory of the analytic
deep prior approach

Clemens Arndt∗

Center for Industrial Mathematics, University of Bremen, Germany

E-mail: carndt@uni-bremen.de

Received 16 March 2022, revised 22 July 2022
Accepted for publication 7 September 2022
Published 26 September 2022

Abstract
The analytic deep prior (ADP) approach was recently introduced for the theo-
retical analysis of deep image prior (DIP) methods with special network archi-
tectures. In this paper, we prove that ADP is in fact equivalent to classical
variational Ivanov methods for solving ill-posed inverse problems. Besides, we
propose a new variant which incorporates the strategy of early stopping into the
ADP model. For both variants, we show how classical regularization properties
(existence, stability, convergence) can be obtained under common assumptions.
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1. Introduction

In particular the field of image processing (e.g. denoising, deblurring) is a constant source
for challenging inverse problems. The restoration of a corrupted image is typically ill-posed,
so regularization techniques are needed to obtain a natural looking result. In other words, the
restoration method should incorporate some prior knowledge about the appearance of natural
images. However, dependent on the application it can be very difficult to give a mathemati-
cally exact definition of what natural looking images are. This makes it hard to encode such
prior knowledge in a penalty term for classical variational regularization approaches (e.g. TV
regularization [8, 30]).
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However, deep learning methods with convolutional neural networks have proven to be quite
successful in generating and restoring images [16, 22, 35]. One reason for that is the use of
appropriate training data, but [25] shows that just the architecture of an untrained network can
already serve as an image prior. The so-called deep image prior (DIP) approach consists in
optimizing the weights of a neural network ϕθ to minimize the loss function

1
2
‖Aϕθ(z) − yδ‖2 (1.1)

for some forward operator A and noisy data yδ (the network’s input z is randomly chosen
and kept fixed). Although no training data and no penalty functional is used, DIP produces
remarkable results in different image processing tasks, as can be seen in [25]. Even challeng-
ing problems like sparse angle computed tomography [3] or compressive sensing [19] can be
solved this way.

Developing regularization theory for deep learning methods is of high interest [2]. A very
prosperous approach is to combine classical theory with deep learning (e.g. [26, 29]). The num-
ber of papers which analyze DIP from a theoretical point of view is also growing. In [18] a
functional is constructed, which measures the ability of the neural network ϕθ to approximate
an arbitrary image. This functional can then be used as a penalty term in a classical variational
method. The authors of [32] analyze how fast a DIP network approximates the low-frequency
and high-frequency components of the target image. By controlling this so-called spectral bias,
overfitting is avoided. In [20] the ability to denoise images is attributed to convolutional layers,
which are faster in fitting smooth images than noisy ones. The role and the choice of hyperpa-
rameters for DIP approaches is described in [34]. A Bayesian perspective is presented in [9],
where DIP is interpreted as a Gaussian process.

The choice of architecture is crucial for applications of DIP. Generative neural networks
are a natural choice due to their ability to reproduce natural looking images. But the authors of
[13] took a LISTA-like network [17] instead to develop the so-called analytic deep prior (ADP)
approach. This may not lead to a better practical performance of DIP, but it is the foundation for
an interesting theory. The main aspect consists in interpreting the training of a neural network
as the optimization of a Tikhonov functional. There is an analogy to [1], where the penalty
term for a Tikhonov functional is optimized. But in contrast to that, the focus of [13] is on the
forward operator inside the functional (see section 2).

This work summarizes deeper investigations of the ADP model. The main result (theorem
3.3) is an equivalence between the ADP approach and classical Ivanov methods [36]. Out of this
follows a complete analysis of the regularization properties of ADP including the existence of
solutions, stability of reconstructions and convergence towards the ground truth for vanishing
noise.

In practical applications of DIP, gradient descent and early stopping is used to minimize the
loss function (1.1). Thus, a global (or at least a local) minimum is not reached in general. While
this fact was not considered in the theoretical derivation of ADP, we propose a new variant
(called ADP-β) which incorporates the effect of early stopping into the model (section 3.2).
We also analyze the regularization properties of this new approach.

In section 4 we compare different numerical ways to compute ADP and DIP (with a LISTA-
like architecture) solutions of simple inverse problems.1 We find that numerical solutions of
both methods are mostly similar to each other, which is important for using the ADP theory for
interpretations of DIP. But there can also be observed some interesting disparities between the

1 Code available at https://gitlab.informatik.uni-bremen.de/carndt/analytic_deep_prior.
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different numerical ways. This illustrates a crucial difference between the analytical definition
of DIP as a minimization problem and the numerical implementation as a gradient descent
iteration.

2. Preliminaries and methods

We consider an inverse problem based on the operator equation

Ax† = y†, (2.1)

where we want to recover the unknown ground truth x† as good as possible. The data y† is
typically not known exactly, but we have only access to noisy data yδ .

Assumption 2.1. We make the following assumptions for the inverse problem (2.1).

• Let X, Y be Hilbert spaces and A ∈ L(X, Y ).
• There exists x† ∈ X and for a given δ > 0, it holds ‖yδ − y†‖ � δ for yδ ∈ Y.
• Let R : X → [0, ∞] be a convex, coercive and weakly lower semicontinuous functional

with R �≡ ∞.

We recall the definition of Bregman distances, which we will use in theorem 3.12 for a
convergence result, similar to the ones in [6, 21].

Definition 2.2 (Bregman distance). For a convex functional R: X → [0, ∞] with
subdifferential ∂R and x̃, x ∈ X, the Bregman distance is defined as the set

DR(x̃, x) = {R(x̃) − R(x) − 〈p, x̃ − x〉 | p ∈ ∂R(x)}. (2.2)

The DIP approach (introduced by [25]) for the inverse problem (2.1) consists in solving

min
θ

1
2
‖Aϕθ(z) − yδ‖2 (2.3)

via a gradient descent w.r.t. the parameters θ of a neural network ϕθ, as already described
in the introduction. Despite the use of a neural network, DIP is a model-based approach and
not data-based. To derive the ADP approach, we have to make two assumptions (see [13] for
details).

The first one is choosing ϕθ to be a LISTA-like network [17], which consists of several
layers of the form

xl+1 = Sαλ(xl − λB∗(Bxl − yδ)), (2.4)

where B = θ is the trainable parameter. Originally, this architecture is inspired by ISTA [12],
an algorithm for finding sparse solutions of the inverse problem (2.1), and Sαλ is the shrinkage
function. More general, we can choose Sαλ to be the proximal mapping of a penalty func-
tional R. Then, (2.4) equals a proximal forward–backward splitting algorithm [11, theorem 3.4]
which converges to the solution of the minimization problem

min
x∈X

1
2
‖Bx − yδ‖2 + αR(x). (2.5)

3
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The second assumption is letting the number of layers tend to infinity. This might be difficult
in practice (see section 4), but it causes the output ϕθ(z) of the network to be a solution of (2.5).
Therefore the ADP model (introduced by [13]) is defined as

min
B∈L(X,Y)

1
2
‖Ax(B) − yδ‖2

s.t. x(B) = arg min
x∈X

1
2
‖Bx − yδ‖2 + αR(x).

(2.6)

While DIP is about optimizing the weights of a neural network, ADP is about optimizing the
forward operator in a Tikhonov functional. If we add an additional regularization term for the
operator B, we get the (new) ADP-β model

min
B∈L(X,Y)

1
2
‖Ax(B) − yδ‖2 + β‖B − A‖2

s.t. x(B) = arg min
x∈X

1
2
‖Bx − yδ‖2 + αR(x).

(2.7)

The reason for this modification will be explained in section 3.2.
To guarantee uniqueness of x(B), the functional R should be strictly convex, but this is not

always required. If we assume R even to be strongly convex, x(B) depends continuously on B
as the following theorem states. It will be useful for proving existence and stability results for
ADP-β.

Theorem 2.3. Let R: X → [0, ∞] be a strongly convex, coercive and weakly lower semi-
continuous functional. Then

x(B) = arg min
x∈X

1
2
‖Bx − yδ‖2 + αR(x) (2.8)

depends continuously on B ∈ L(X, Y).

The proof can be found in the appendix A.1.

3. Theoretical results

3.1. Equivalence to classical methods

DIP solutions of inverse problems are naturally restricted to be the output of a neural network.
Analogously, only elements of the set

UαR =

{
x̂ ∈ X

∣∣∣∣ ∃B ∈ L(X, Y ) : x̂ = arg min
x∈X

1
2
‖Bx − yδ‖2 + αR(x)

}
(3.1)

can be solutions of the ADP approach. By definition

min
x∈UαR

1
2
‖Ax − yδ‖2 (3.2)

is equivalent to the original ADP problem (2.6). To get a better understanding of this mini-
mization problem we investigate UαR. It will turn out that the set UαR can be characterized in a

4
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much easier way, even without using an operator B ∈ L(X, Y ). For this purpose, we formulate
the following lemmas.

Lemma 3.1. Let R: X → [0, ∞] be a convex, coercive and weakly lower semicontinuous
functional and x̂ ∈ X, yδ ∈ Y, yδ �= 0 and α > 0 be arbitrary. If there exists v ∈ ∂R(x̂) such
that

α〈v, x̂〉 � ‖yδ‖2

4
(3.3)

holds, then there exists a linear operator B ∈ L(X, Y) which fulfills

x̂ = arg min
x∈X

1
2
‖Bx − yδ‖2 + αR(x). (3.4)

The proof can be found in the appendix A.2.

Lemma 3.2. Let R: X → [0, ∞] be a convex, coercive and weakly lower semicontinuous
functional and x̂ ∈ X, yδ ∈ Y, α > 0 be arbitrary. If for every v ∈ ∂R(x̂)

α〈v, x̂〉 >
‖yδ‖2

4
(3.5)

holds, then there exists no linear operator B ∈ L(X, Y) which fulfills

x̂ = arg min
x∈X

1
2
‖Bx − yδ‖2 + αR(x). (3.6)

The proof can be found in the appendix A.3. For given yδ ∈ Y, x̂ ∈ X and a penalty term R,
these lemmas state whether there exists a linear forward operator B: X → Y such that x̂ is the
Tikhonov solution w.r.t. R of the inverse problem w.r.t. yδ . As a consequence, we can write the
ADP minimization problem with a much simpler side constraint.

Theorem 3.3. Let assumption 2.1 hold. Then, for all yδ ∈ Y, yδ �= 0, α > 0 the formulation

min
x∈X

1
2
‖Ax − yδ‖2

s.t. ∃ v ∈ ∂R(x) : α〈v, x〉 � ‖yδ‖2

4

(3.7)

is equivalent to the ADP-problem (2.6).

Proof. According to lemmas 3.1 and 3.2 there exists a linear operator B ∈ L(X, Y) such that

x̂ = arg min
x∈X

1
2
‖Bx − yδ‖2 + αR(x) (3.8)

if and only if x̂ fulfills the side constraint of (3.7). �

Remark 3.4. For the standard Tikhonov penalty term R(x) = 1
2‖x‖2, it holds ∂R(x) = x. In

this case we get

min
x∈X

1
2
‖Ax − yδ‖2

s.t. ‖x‖2 � ‖yδ‖2

4α

(3.9)

5
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as an equivalent formulation of the ADP problem (2.6). For r = ‖yδ‖2/(4α), this equals the
Ivanov regularization method

min
x∈X

1
2
‖Ax − yδ‖2

s.t. ‖x‖2 � r.

(3.10)

As [36] shows, this method is in fact equivalent to the Tikhonov method

min
x∈X

1
2
‖Ax − yδ‖2 +

α̃

2
‖x‖2 (3.11)

for some α̃ dependent on yδ and r. We note that the Tikhonov parameter α̃ may be equal to
zero and in particular it differs from the parameter α of the ADP problem (see section 3.2).

Remark 3.5. There are also cases in which the side constraint of (3.7) defines a non-
convex feasible set. Then, the ADP problem is more difficult to solve. We give a simple
two-dimensional example with the penalty term R: R2 → [0, ∞),

R(x1, x2) =

{
3 · |x1 − 5| for 3 · |x1 − 5| � |x2|,

|x2| for |x2| > 3 · |x1 − 5|.
(3.12)

This functional has a non-centered minimum at (5, 0)T and the absolute value of its gradient
|∂R(x)| is strongly dependent on the direction. Because of these properties, it is easy to show
that the term 〈v, x〉, v ∈ ∂R(x) in the side constraint of (3.7) is non-convex w.r.t. x ∈ R2.

3.2. Parameter choice and early stopping

By construction of the ADP model, we expect it in application to act like DIP. But in the
previous section it turned out that ADP behaves in fact equivalent to classical methods like
Tikhonov’s. When we apply ADP to an inverse problem, the question arises whether ADP can
also deliver something that is ‘new’ and not equivalent to a Tikhonov solution. This section
presents, how the model has to be changed to produce ADP solutions that are more similar to
DIP solutions. In the same time, we derive a strategy for choosing the parameter α of the ADP
model.

When we compare the ADP method

min
B∈L(X,Y)

1
2

‖ Ax(B) − yδ‖2

s.t. x(B) = arg min
x∈X

1
2

‖ Bx − yδ‖2 +
αADP

2
‖ x‖2

(3.13)

to the equivalent (see remark 3.4) Tikhonov method

min
x∈X

1
2
‖Ax − yδ‖2 +

α̃

2
‖x‖2, (3.14)

we have to make sure not to confuse the parameters αADP and α̃ of both models with each
other. At first we state the following relation between these parameters.

Lemma 3.6. If the solutions of (3.13) and (3.14) coincide, α̃ � αADP holds. Equality of the
parameters could only occur if yδ was in the kernel of A∗ or a singular vector of A.
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Figure 1. Comparison of ADP solutions during gradient descent to the Tikhonov method
(orange: at the start of the gradient descent, red: by early stopping, gray: limit of the
gradient descent). The forward operator is an integration like in (4.1) and the data
yδ is contaminated with Gaussian noise (PSNR = 40). The Tikhonov parameter and
the stopping criterion for ADP were chosen a posteriori to achieve the most accurate
reconstructions.

The proof can be found in the appendix A.4. In general, we can assume that α̃ < αADP

holds. So in any application it makes sense to choose the ADP parameter greater than one
would choose the parameter of a Tikhonov model. But independent of the parameter choice,
the ADP solution will always be equivalent to a Tikhonov solution (remark 3.4). To make ADP
more similar to DIP, we apply early stopping [15, section 7.8]. This strategy is often used in
the application of DIP but was not considered for the ADP model yet.

For a given inverse problem, we could solve the ADP problem (3.13) with a gradient descent
algorithm w.r.t. the operator B (see section 4 for details) and terminate this iteration early. Tak-
ing B0 = A as initial value leads by definition to x(B0) being equal to the Tikhonov solution
w.r.t. the parameter αADP. We assume the iteration to converge successfully towards the min-
imizer x̂ of (3.13). Since x̂ is also the minimizer of (3.14), the limit of the iteration is also a
Tikhonov solution but w.r.t. the parameter α̃. Because of α̃ < αADP, the starting solution x(B0)
is a stronger regularized Tikhonov solution than the limit x̂ of the iteration (see figure 1).

If we apply early stopping, we take some x(Bk) in between, which in general does not
equal a Tikhonov solution w.r.t. A (see figure 1). This strategy makes sense if we expect x(Bk)
to be a better solution than (the Tikhonov solutions) x(B0) and x̂. That could be the case if
x(B0) is slightly over-regularized and x̂ is slightly under-regularized. Because then, the optimal
regularization would lay in between.

Now, we come back to the parameter choice. If we have a criterion for estimating a suitable
Tikhonov parameter αTik for a given inverse problem, we should try to choose αADP in a way
that

α̃ < αTik < αADP (3.15)

holds. Because then, x(B0) will be slightly over-regularized and x̂ slightly under-regularized,
as proposed.

In the example of figure 1, we see that the ADP solution x(Bk), obtained with early stopping,
is a better approximation for the ground truth x† than the most accurate Tikhonov solution,

7
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which corresponds to αTik. But this result is strongly dependent on the particular inverse
problem. The Tikhonov method is optimal for data that is normally distributed. If the given
distribution differs from that, it is theoretically possible that ADP with early stopping produces
a better solution than the Tikhonov method.

Finally, we want to include the early stopping strategy directly into the ADP model to be able
to investigate its effect on the regularization of inverse problems. Early stopping enforces the
iterated variable to stay close to the initial value. Because of B0 = A, we can expect ‖Bk − A‖
to be small for small k. This leads to using ‖Bk − A‖ as an additional penalty term in the ADP
problem, which has a similar effect as early stopping [4, section 2.3], [33, section 4]. What
comes out is the ADP-β model

min
B∈L(X,Y)

1
2
‖Ax(B) − yδ‖2 + β‖B − A‖2

s.t. x(B) = arg min
x∈X

1
2
‖Bx − yδ‖2 + αR(x).

(3.16)

3.3. Properties of ADP

The equivalence between ADP and the Ivanov method (with general convex penalty term
R), shown in section 3.1, allows to obtain some regularization properties (existence, stability,
convergence) for ADP. We suppose that assumption 2.1 holds. Besides the functional

R̃(x) = min
v∈∂R(x)

〈v, x〉 (3.17)

is assumed to be well-defined. Because then, the side constraint of (3.7) can be formulated as

R̃(x) � ‖yδ‖2

4α
. (3.18)

Due to 〈v, x〉 = R(x) + R∗(v) for v ∈ ∂R(x), where R∗ denotes the convex conjugated func-
tional, coercivity of R implies coercivity of R̃.

Remark 3.7 (Existence). There exists a solution of the ADP problem (2.6) if the func-
tional R̃, defined in (3.17), is weakly lower semicontinuous. This follows from the equivalence
theorem 3.3 and [37, theorem 2.1] about the existence of Ivanov solutions.

Uniqueness of solutions and stability w.r.t. the data yδ is less trivial. First, the right-hand side
of the side constraint (3.18) is dependent on yδ , which is not the case for ordinary Ivanov prob-
lems. Secondly, we know from remark 3.5, that the constraint (3.18) does not always define
a convex feasible set. Nevertheless, for the special case R(x) = 1

2‖x‖2 we can obtain a conve-
nient stability result. In this case, R̃(x) = ‖x‖2 is a strictly convex functional. Additionally, if
the given inverse problem is ill-posed, we can assume the ADP solutions to fulfill the constraint
(3.18) with equality. Under these conditions, the following theorem provides stability of ADP.

Theorem 3.8 (Stability). For R(x) = 1
2‖x‖2, let (yk) ⊂ Y be a sequence with yk → ŷ ∈ Y

and assume that the corresponding ADP solutions xk, x̂ are unique and fulfill the side con-
straint in (3.9) with equality. Then ADP is stable, which means xk → x̂.

The proof can be found in the appendix A.5.
To obtain a convergence result for ADP, it makes sense to use standard convergence

theorems, either of the Tikhonov method [21, theorem 4.4] or of the Ivanov method [23,
theorem 2.5], [31, theorem 3]. They differ especially in the source conditions they require
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for the ground truth x† and in the parameter choice rules. If we assume R̃ to be convex, by [36,
theorem 2] and the equivalence theorem 3.3, the Tikhonov problem

min
x∈X

1
2
‖Ax − yδ‖2 + α̃R̃(x) (3.19)

is equivalent to the ADP formulation (3.7) for suitable chosen α̃ � 0.

Remark 3.9 (Convergence). Because of the equivalence between (3.7) and (3.19), the
convergence of ADP solutions xδ

α to x† for vanishing δ w.r.t. the Bregman distance can be
directly derived from Tikhonov convergence theorems. But the ADP parameterα does not coin-
cide with the Tikhonov parameter α̃. That’s why, for ADP we do not get an explicit parameter
choice rule like α ∼ δ. Besides, a source condition for x† has to be fulfilled by the functional
R̃ (defined in (3.17)) and not by the penalty term R.

3.4. Properties of ADP-β

For proving the existence of solutions of variational regularization schemes, [21, theorem 3.1]
provides a useful framework. If we want to apply this for ADP-β, it has to be ensured that
B �→ x(B) is weak-weak continuous [21, assumptions 2.1]. But unfortunately, in general this
is not the case.

To obtain convenient regularization properties anyway, we restrict to X = Y = L2(Ω) with
Ω ⊂ Rn. In this setting, we consider a forward operator A : X → Y that can be parameterized
by a function f ∈ Lp(Ω), p ∈ [1, ∞). More precisely, we take a continuous, bilinear operator
T : Lp(Ω) × X → Y and define

Ax = T( f , x). (3.20)

The same parameterization of operators by functions is used in [5]. One typical example would
be a convolutional operator T( f , x) = f ∗ x.

The crucial idea is the additional restriction f ∈ W1,p(Ω) to take advantage of the compact
embedding of Sobolev spaces W1,p(Ω) ⊂ Lp(Ω). A similar strategy is used in [24] for achieving
weak-weak continuity of the forward operator.

We define the parameterized ADP-β approach as

min
g∈W1,p

1
2
‖T( f , xg) − yδ‖2

L2 + β‖ f − g‖2
W1,p

s.t. xg = arg min
x∈L2

1
2
‖T(g, x) − yδ‖2

L2 + αR(x).

(3.21)

In particular, this can be interpreted as a Tikhonov method for solving the nonlinear inverse
problem F(g†) = y† with the forward operator F : W1,p(Ω) → Y, F(g) = T( f , xg).

Remark 3.10 (Existence). The forward operator F is weak-strong continuous if the
penalty term R is strongly convex. This holds, because weak convergence gk ⇀ g w.r.t. W1,p(Ω)
implies convergence by norm in Lp(Ω), by theorem 2.3 the convergence of xgk → xg follows,
and the bilinear operator T is continuous. This is more than enough to fulfill the assumptions
of [21, theorem 3.1], which provides the existence of a solution of (3.21).
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A weak stability result for the parameterized ADP-β method could be directly obtained
from [21, theorem 3.2]. But this particular framework even allows to prove strong stability.

Theorem 3.11 (Stability). For p = 2, let R be a strongly convex penalty term, (yk) ⊂ Y a
convergent sequence with yk → ŷ and (gk) ⊂ W1,p(Ω) the corresponding solutions of the ADP-
β problem (3.21). Then, (gk) has a convergent subsequence and the limit of each subsequence
is an ADP-β solution corresponding to ŷ.

The proof can be found in the appendix A.6.
While proving existence and stability of ADP-β-solutions required a smart parameterization

and the use of compact embeddings, a convergence theorem (w.r.t. the Bregman distance) can
be proven for the general formulation (2.7). Similar to classical results like [21, theorem 4.4]
or [6, theorem 2], we need to assume a source condition

∃ w ∈ Y : A∗w ∈ ∂R(x†). (3.22)

The parameter β turns out to be really helpful for obtaining a convergence result.

Theorem 3.12 (Convergence). Let assumption 2.1 hold, x† be an R-minimizing solution
of (2.1) which fulfills the source condition (3.22) and assume there exist ADP-β solutions x̂δ

α

of (2.7). If α is chosen proportional to δ, there exists d ∈ DR(x̂δ
α, x†) which fulfills d = O(δ).

The proof can be found in the appendix A.7.

4. Numerical computations

Aim. We want to see whether there is a similarity between ADP and DIP also on the numeri-
cal side. The ADP approach is based on the idea of using a LISTA network in a DIP method.
Usually LISTA architectures contain round about ten layers, but ADP is motivated with a net-
work of infinite depth (see section 2). To derive the ADP model, the output of this infinite
network is then replaced by the solution of a minimization problem. So the question arises,
whether numerically computed ADP solutions of an inverse problem are yet similar to solutions
obtained via a DIP with LISTA architecture.

In this section, we present algorithms for the computation of ADP solutions and we compare
them with DIP solutions. In doing so, the focus is not on the performance of the methods
(in comparison to other state-of-the-art reconstruction algorithms) but on the similarity of the
different solutions.

Methods. From theorem 3.3, we know that the ADP problem is equivalent to an Ivanov
problem. This creates a possibility to compute ADP solutions easily, fast and almost exactly
(we call this method ADP Ivanov). In contrast to that, it is more difficult to realize a LISTA
architecture with infinite depth. But there are at least two possibilities to simulate such a
network.

The first idea (algorithm 1: DIP LISTA L = ∞) is to begin with a network ϕB of ten layers
and to increase the network depth during the training process of the DIP. This is done implicitly
with a simple trick. In each training step, the network’s input is set to be the network’s output
of the previous step [13, appendix 3]. So the original input will pass through more and more
layers and in each step the last ten layers are optimized (via backpropagation).

The second idea (algorithm 2: ADP IFT) is to compute x(B) from (2.6) with a classical
algorithm like ISTA. After that, one can compute the gradient of x(B) w.r.t. B (see the proof
of [13, lemma 4.1]) via the implicit function theorem (IFT). Thus, backpropagation through a
big amount of layers is avoided.
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Algorithm 1. DIP LISTA L = ∞.

Algorithm 2. ADP IFT.

For the standard DIP approach, we use a LISTA-like architecture of ten layers (DIP LISTA
L = 10) and optimize the weights via backpropagation. So, in total we compare four different
methods (ADP Ivanov, ADP IFT, DIP LISTA L = ∞, DIP LISTA, L = 10). Since solving the
Ivanov problem results in the exact ADP solution, we use this as a reference for the other three
methods (for which we do not have convergence guarantees).

In all methods we use the elastic net functional [38] R(x) = α1‖x‖1 + α2
2 ‖x‖2 as a penalty

term. So there is one parameter for 
1-regularization (leads to sparsity) and one parameter for

2-regularization (leads to stability and smoothness). In the LISTA-architecture, this is realized
by subtracting the gradient of the 
2-term before applying the activation function.

Setting. We consider two different artificial inverse problems (inversion of the integration
operator and a deconvolution) on L2(I) for an interval I ⊂ R. The forward operators are

(A1x)(t) =

∫ t

0
x(s) ds and A2x = g ∗ x, (4.1)

g being a Gaussian function. Both of them lead to ill-posed inverse problems. We chose three
different ground truth functions and created data by applying the forward operators and adding
normally distributed random noise. This leads to six examples in total, which is enough for
some basic observations. Figure 2 shows the reconstructions corresponding to the integration
operator A1. The three rows contain the three different ground truth functions and each column
contains a different method. For comparison, the actual ADP solution (ADP Ivanov) and the
ground truth is displayed in every plot. Since we are only interested in finding similarities
and disparities between the solutions of the different methods, the choice of the regularization
parameters plays a minor role. So, we took the same values α1, α2 for each method and simply
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Figure 2. Computation of ADP and DIP reconstructions via the IFT, via a DIP with
LISTA network (L = ∞ and L = 10) and via the equivalent Ivanov problem. The for-
ward operator is A1 (integration). The given data has PSNR = 40 due to additive Gaus-
sian noise. The regularization parameters α1, α2 are chosen for each example (row)
separately but are the same for each method (column).

chose them a posteriori for each example to minimize the L2-error between reconstructions
and ground truth. Figure 3 shows the analogous results for the deconvolution problem (forward
operator A2).

Observations. From these experiments, we can make the following observations. There
is a significant difference between using L = 10 or L = ∞ layers in a LISTA network. With
an infinite number of layers, the reconstructions are looking more realistic. The results of the
DIP LISTA L = ∞ (algorithm 1) method and of the IFT method (algorithm 2) are always
looking quite similar. This was expected because both of them simulate an infinitely deep
LISTA network. Differences are probably due to the different ways the gradients are computed
or due to slow convergence of the methods.

In most of the cases, the reconstructions of these both methods are looking quite similar to
the actual ADP solution. But sometimes they contain artifacts (e.g. the peaks in figure 3, third
row). It seems that there are some spots which are hard to reconstruct for the DIP methods
and others are rather simple. Besides, the ADP problem (2.6) is not a convex minimization
problem w.r.t. B. So there is no guarantee for the methods which do gradient descent (DIP
LISTA L = ∞ and the IFT method) to converge towards the global minimizer. Figure 4 shows
that the reconstructions of these methods are indeed dependent on the initial value B0 of the
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Figure 3. Computation of ADP and DIP reconstructions via the IFT, via a DIP with
LISTA network (L = ∞ and L = 10) and via the equivalent Ivanov problem. The for-
ward operator is A2 (convolution). The given data has PSNR = 45 due to additive
Gaussian noise. The regularization parameters α1, α2 are chosen for each example (row)
separately but are the same for each method (column).

Figure 4. The same setting and methods as in figure 3 but with different initial values B0.
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algorithms. In contrast to that, the Ivanov problem from theorem 3.3 is convex (with the elastic
net penalty term R). That’s probably why the actual ADP solutions are the only ones which
never contain strange artifacts and the only ones that are always quite good reconstructions of
the ground truth.

The easiest possibility to slightly improve the reconstruction quality is to apply early stop-
ping. In doing so, the most severe artifacts in the reconstructions can be diminished. This
case corresponds to the ADP-β approach (see section 3.2), whose additional convex term
β‖B − A‖2 is a numerical advantage because it stabilizes the gradient descent for finding the
minimizer. Indeed, adding the gradient of the β-term to the update in algorithm 2 (ADP IFT)
can also diminish the severe artifacts. But we do not include experimental results about this,
since the most interesting part is the comparison with the equivalent Ivanov problem, which
does not exist for ADP-β.

The main conclusion is the numerical verification of the derivation of the ADP problem
from the DIP approach. It is possible to use the theoretical analysis of the ADP problem for
interpretations of the DIP approach because of the similarity between the reconstructions from
the different numerical methods. However, the examples from figure 4 illustrate that DIP can
be formulated as a minimization problem (2.3) but a numerical computed solution is not auto-
matically a global minimizer of this problem. If early stopping is used, it is probably not even a
local minimizer. Hence, there is a significant difference between the theoretical definition and
the practical implementation of DIP.

5. Conclusion

ADP and ADP-β were introduced as methods for solving ill-posed inverse problems in a typical
Hilbert space setting (assumption 2.1). Both of them are motivated by considering DIP with a
LISTA-like architecture. The main result is an equivalence of ADP to the classical method of
Ivanov regularization.

We have proven existence, stability and convergence results for both ADP and ADP-β.
The obtained regularization properties are comparable to the ones of classical methods like
Tikhonov’s. In principal, these results can be transferred to DIP with LISTA-like networks. But
due to non-convexity of the DIP minimization problem, numerically computed DIP solutions
can differ significantly from exact ADP solutions, although they are similar in many cases. We
conclude that theoretical analyses of the DIP approach should consider the whole optimization
process and not only the properties of the minimizer.

One very important part is the early stopping of the DIP optimization process. In the ADP
setting, we incorporated this strategy with an additional penalty term, which resulted in the
ADP-β model. The effect of this regularization can be seen by comparing the convergence
theorems of ADP and ADP-β. Theorem 3.12 provides a parameter choice rule (α ∼ δ) for
ADP-β, which is a big advantage over ADP.

A generalization of the ADP regularization results to DIP with general convolutional neural
networks (CNNs) would be very desirable. The LISTA architecture was suitable because of
its similarity to proximal splitting algorithms and the possibility to interpret the output as a
solution of a variational problem. Finding similar connections for general CNNs is harder.
However in [7], CNNs are used to model proximal mappings and in [28], CNNs are interpreted
as algorithms for sparse coding. Besides, [10] asserts that most common activation functions
are in fact proximal mappings and they establish a theory for characterizing the fixed point
sets of neural networks as solutions of variational inequalities. These directions could provide
ideas for possible future extensions.
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Appendix A. Proofs of theoretical results

A.1. Theorem 2.3

Continuity of B �→ x(B).

Proof. Let (Bk) ⊂ L(X, Y) be a sequence of operators with Bk → B ∈ L(X, Y). At first, we
mention that the sequence (x(Bk)) is bounded because

αR(x(Bk)) � 1
2
‖Bkx(Bk) − yδ‖2 + αR(x(Bk)) � 1

2
‖Bkx(B) − yδ‖2 + αR(x(B)) (A.1)

holds. Further, we can estimate

1
2
‖Bx(Bk) − yδ‖2 + αR(x(Bk))

=
1
2
‖Bkx(Bk) − yδ + (B − Bk) x(Bk)‖2 + αR(x(Bk))

� 1
2

(‖Bkx(Bk) − yδ‖ + ‖(B − Bk) x(Bk)‖)2 + αR(x(Bk))

=
1
2
‖Bkx(Bk) − yδ‖2 + αR(x(Bk))

+ ‖(B − Bk) x(Bk)‖ ·
(

‖Bkx(Bk) − yδ‖ +
1
2
‖(B − Bk) x(Bk)‖

)
.

(A.2)

Because of the boundedness of (x(Bk)) and the convergence Bk → B, the term

‖(B − Bk) x(Bk)‖ ·
(

‖Bkx(Bk) − yδ‖ +
1
2
‖(B − Bk) x(Bk)‖

)
(A.3)

converges to zero. For the remaining terms, we can estimate

1
2
‖Bkx(Bk) − yδ‖2 + αR(x(Bk)) � 1

2
‖Bkx(B) − yδ‖2 + αR(x(B)), (A.4)

and ‖Bkx(B) − yδ‖2 converges to ‖Bx(B) − yδ‖2. So (x(Bk)) is a minimizing sequence of
the strongly convex functional 1

2‖Bx − yδ‖2 + αR(x) because x(B) is the minimizer. By [27,
theorem 1], the minimizing sequence converges to the minimizer x(B). �
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A.2. Lemma 3.1

First part of the equivalence theorem for ADP to Ivanov problems.

Proof. Let x̂, v, yδ, α and R be given according to the assumptions. We have to find a linear
operator B such that

−B∗(Bx̂ − yδ) ∈ α∂R(x̂). (A.5)

holds. Because of v ∈ ∂R(x̂), we just try to solve the equation

−B∗(Bx̂ − yδ) = αv (A.6)

for B. If x̂ = 0, solving would be trivial. Otherwise, we can decompose v into

v = μx̂ + v⊥ s.t. 〈v⊥, x̂〉 = 0. (A.7)

Accordingly it is μ = 〈v, x̂〉/‖x̂‖2. With that, we can write the equation from above as

B∗Bx̂ + αμx̂ + αv⊥ = B∗yδ. (A.8)

We consider a linear operator B: X → Y of the form

Bx = (σ1〈x, x̂〉 + σ2〈x, v⊥〉) · yδ (A.9)

with two coefficients σ1 and σ2 to be determined later. Then, the adjoint operator is given by

B∗y = 〈y, yδ〉(σ1 x̂ + σ2v⊥) (A.10)

and it holds

B∗Bx̂ = B∗((σ1‖x̂‖2) · yδ) = σ2
1‖x̂‖2‖yδ‖2 x̂ + σ1σ2‖x̂‖2‖yδ‖2v⊥, (A.11)

B∗yδ = σ1‖yδ‖2 x̂ + σ2‖yδ‖2v⊥. (A.12)

To fulfill (A.8), we have to solve

σ2
1‖x̂‖2‖yδ‖2 x̂ + σ1σ2‖x̂‖2‖yδ‖2v⊥ + αμx̂ + αv⊥ = σ1‖yδ‖2 x̂ + σ2‖yδ‖2v⊥.

(A.13)

Because x̂ and v⊥ are orthogonal to each other, we get the two equations

σ2
1‖x̂‖2‖yδ‖2 + αμ = σ1‖yδ‖2, (A.14)

σ1σ2‖x̂‖2‖yδ‖2 + α = σ2‖yδ‖2. (A.15)

Notice that (A.15) and the coefficient σ2 could be ignored if v⊥ = 0 held.
Equation (A.14) can be solved for σ1 with a quadratic formula, which leads to

σ1 =
1

2‖x̂‖2
±

√
1

4‖x̂‖4
− αμ

‖x̂‖2‖yδ‖2
. (A.16)

Accordingly,

αμ

‖yδ‖2
� 1

4‖x̂‖2
(A.17)
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must hold to get real solutions. We know from above that μ = 〈v, x̂〉/‖x̂‖2. If we insert this,
we will see that this matches exactly the assumptions of the lemma.

Now, equation (A.15) has to be solved for σ2. Excluding σ2 leads to

σ2(σ1‖x̂‖2‖yδ‖2 − ‖yδ‖2) + α = 0. (A.18)

If the term inside of the parenthesis does not equal zero, there will exist a solution σ2. If the term
equaled zero, equation (A.14) would lead to μ = 0. But in this case, we could choose σ1 = 0
(the quadratic formula allows two solutions), and then it is no problem to find a solution for
σ2, too.

By finding solutions for σ1 and σ2, we showed that the operator B defined in (A.9) solves
equation (A.6). So the lemma is proved. �

A.3. Lemma 3.2

Second part of equivalence theorem for ADP to Ivanov problems.

Proof. Let x̂, yδ, α and R be given according to the assumptions. Assume there exists a linear
operator B such that

0 ∈ B∗(Bx̂ − yδ) + α∂R(x̂) (A.19)

holds. It follows

v := − 1
α

B∗(Bx̂ − yδ) ∈ ∂R(x̂). (A.20)

We can calculate α〈v, x̂〉 = −‖Bx̂‖2 + 〈yδ , Bx̂〉. So according to the assumptions,

−‖Bx̂‖2 + 〈yδ, Bx̂〉 >
‖yδ‖2

4
(A.21)

must hold. But with Young’s inequality, we get

−‖Bx̂‖2 + 〈yδ, Bx̂〉 � −‖Bx̂‖2 +
1
4
‖yδ‖2 + ‖Bx̂‖2 =

‖yδ‖2

4
. (A.22)

Obviously, this is a contradiction. That’s why such an operator B cannot exist. �

A.4. Lemma 3.6

Relation between the ADP parameter and the Tikhonov parameter of the equivalent problem.

Proof. Let x̂ be the solution of the ADP problem (3.13). Because of the equivalence to the
Tikhonov method, x̂ is the solution of (3.14) in the same time. Besides, x(A) is the Tikhonov
solution w.r.t. the parameter αADP of the inverse problem. Because of the minimizing properties
of x̂ and x(A),

1
2
‖Ax̂ − yδ‖2 � 1

2
‖Ax(A) − yδ‖2, (A.23)

1
2
‖Ax(A) − yδ‖2 +

αADP

2
‖x(A)‖2 � 1

2
‖Ax̂ − yδ‖2 +

αADP

2
‖x̂‖2 (A.24)
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holds. It follows ‖x(A)‖2 � ‖x̂‖2. Both x(A) and x̂ are Tikhonov solutions of the same problem
(only with different parameters). So α̃ � αADP must hold because the norm of x̂ is greater (or
equal) than the norm of x(A).

Now, we assume α̃ = αADP > 0. By remark 3.4, the problems

min
x∈X

1
2
‖Ax − yδ‖2 +

αADP

2
‖x‖2, (A.25)

min
x∈X

1
2
‖Ax − yδ‖2 s.t. ‖x‖2 � ‖yδ‖2

4αADP
(A.26)

are equivalent. The solution x̂ fulfills

(A∗A + αADP · Id)x̂ = A∗yδ (A.27)

and we assume A∗yδ �= 0. Then, x̂ must fulfill the side constraint of (A.26) with equality, oth-
erwise A∗Ax̂ = A∗yδ would hold, which is a contradiction. Accordingly we get αADP‖x̂‖2 =
‖yδ‖2/4 and by computing the inner product of (A.27) with x̂, it follows

‖Ax̂‖2 +
‖yδ‖2

4
= ‖Ax̂‖2 + αADP‖x̂‖2 = 〈Ax̂, yδ〉. (A.28)

If we then apply the Cauchy–Schwarz and Young’s inequality, we get

〈Ax̂, yδ〉 � ‖Ax̂‖ · ‖yδ‖ � ‖Ax̂‖2 +
‖yδ‖2

4
, (A.29)

which means these inequalities must in fact hold as equalities. Therefore, Ax̂ and yδ must be
linear dependent (Cauchy–Schwarz) and 2‖Ax̂‖ = ‖yδ‖ must hold (Young). It follows

Ax̂ =
1
2

yδ. (A.30)

We can plug this into (A.27) and get

αADP x̂ =
1
2

A∗yδ. (A.31)

Accordingly AA∗yδ = αADPyδ holds, so yδ is a singular vector of A. �

A.5. Theorem 3.8

Stability of the ADP approach.

Proof. We follow some of the ideas of the proofs of [14, theorem 2.1] and [31, Theorem 2].
Let xk and x̂ be unique solutions of (3.9) for yδ = yk, ŷ with yk → ŷ. The sequence (xk) is

bounded, so there exists a weakly convergent subsequence (xkl), xkl ⇀ x∞. For arbitrary ε > 0
and x ∈ X with ‖x‖2 � ‖ŷ‖2 · (4α)−1 − ε, it holds

‖Ax∞ − ŷ‖ � lim inf
l→∞

‖Axkl − ykl‖ � lim
l→∞

‖Ax − ykl‖ = ‖Ax − ŷ‖ (A.32)

because xkl minimizes the ADP problem w.r.t. ykl and x fulfills the side constraint for l big
enough. With ε → 0 and because of the uniqueness of the solutions, we obtain x∞ = x̂. Arguing
with a subsequence of a subsequence leads to the weak convergence xk ⇀ x̂ of the whole
sequence.

18



Inverse Problems 38 (2022) 115005 C Arndt

According to the assumptions, it holds ‖xk‖2 = ‖ŷk‖2 · (4α)−1. So yk → ŷ implies ‖xk‖ →
‖x̂‖ and together with the weak convergence, we finally obtain xk → x̂. �

A.6. Theorem 3.11

Stability of the ADP-β approach.

Proof. First, we note that the sequence (gk) is bounded in W1,2(Ω). Hence, there exists at
least one weakly convergent subsequence. For any subsequence with gk ⇀ ĝ, it holds

T( f , xgk) − yk → T( f , xĝ) − ŷ (A.33)

because of the arguments from remark 3.10. For arbitrary g ∈ W1,2(Ω),

1
2
‖T( f , xĝ) − ŷ‖2

L2 + β‖ĝ − f ‖2
W1,2

� lim inf
k→∞

1
2
‖T( f , xgk) − yk‖2

L2 + β‖gk − f ‖2
W1,2

� lim
k→∞

1
2
‖T( f , xg) − yk‖2

L2 + β‖g − f ‖2
W1,2

=
1
2
‖T( f , xg) − ŷ‖2

L2 + β‖g − f ‖2
W1,2 (A.34)

holds because of the minimizing property of gk w.r.t. yk. Hence, ĝ is a minimizer of (3.21) w.r.t
ŷ. If we choose g = ĝ, the first and the last line in (A.34) coincide, and we get

lim
k→∞

1
2
‖T( f , xgk) − yk‖2

L2 + β‖gk − f ‖2
W1,2

=
1
2
‖T( f , xĝ) − ŷ‖2

L2 + β‖ĝ − f ‖2
W1,2 . (A.35)

If follows limk→∞‖gk − f ‖2
W1,2 = ‖ĝ − f ‖2

W1,2 . Hence, (gk) converges by norm to ĝ. �

A.7. Theorem 3.12

Convergence of the ADP-β approach.

Proof. According to (3.22), we can choose d = R(x̂δ
α) − R(x†) − 〈A∗w, x̂δ

α − x†〉 and there
exists an operator B̂ ∈ L(X, Y) that fulfills x̂δ

α = x(B̂).
Because of the minimizing property of x̂δ

α,

αR(x̂δ
α) � 1

2
‖B̂x̂δ

α − yδ‖2 + αR(x̂δ
α) � 1

2
‖B̂x† − yδ‖2 + αR(x†). (A.36)

holds. If follows

d = R(x̂δ
α) − R(x†) − 〈A∗w, x̂δ

α − x†〉 � 1
2α

‖B̂x† − yδ‖2 − 〈w, Ax̂δ
α − y†〉

� 1
2α

(
‖B̂x† − Ax†‖ + ‖y† − yδ‖

)2
+ ‖w‖‖Ax̂δ

α − y†‖

� 1
2α

(
‖x†‖‖B̂ − A‖ + δ

)2
+ ‖w‖‖Ax̂δ

α − y†‖. (A.37)
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We will show ‖B̂ − A‖ = O(δ) and ‖Ax̂δ
α − y†‖ = O(δ) to deduce d = O(δ) for α chosen

proportional to δ. Because of the minimizing property of B̂, we get

β · ‖B̂ − A‖2 � 1
2
‖Ax(B̂) − yδ‖2 + β · ‖B̂ − A‖2 � 1

2
‖Ax(A) − yδ‖2. (A.38)

From standard convergence results of the Tikhonov method [21, theorem 4.4] or [6, theorem 2],
we get ‖Ax(A) − yδ‖ = O(δ). So ‖B̂ − A‖ = O(δ) holds.

Besides,

‖Ax̂δ
α − y†‖ � ‖Ax(B̂) − yδ‖ + ‖yδ − y†‖ � ‖Ax(A) − yδ‖ + δ (A.39)

holds and we can use ‖Ax(A) − yδ‖ = O(δ) again. So d = O(δ) follows. �

ORCID iDs

Clemens Arndt https://orcid.org/0000-0001-5607-4074

References

[1] Alberti G S, De Vito E, Lassas M, Ratti L and Santacesaria M 2021 Learning the optimal
Tikhonov regularizer for inverse problems Advances in Neural Information Processing Systems
ed A Beygelzimer, Y Dauphin, P Liang and J W Vaughan (Red Hook, NY: Curran Associates,
Inc.)

[2] Arridge S, Maass P, Öktem O and Schönlieb C-B 2019 Solving inverse problems using data-driven
models Acta Numer. 28 1–174

[3] Baguer D O, Leuschner J and Schmidt M 2020 Computed tomography reconstruction using deep
image prior and learned reconstruction methods Inverse Problems 36 094004

[4] Bishop C 1995 Regularization and complexity control in feed-forward networks Int. Conf. Artificial
Neural Networks ICANN’95 pp 141–8

[5] Bleyer I and Ramlau R 2013 A double regularization approach for inverse problems with noisy data
and inexact operator Inverse Problems 29 025004

[6] Burger M and Osher S 2004 Convergence rates of convex variational regularization Inverse Prob-
lems 20 1411–21

[7] Celledoni E, Ehrhardt M J, Etmann C, Owren B, Schönlieb C-B and Sherry F 2021 Equivariant
neural networks for inverse problems Inverse Problems 37 085006

[8] Chambolle A and Pock T 2011 A first-order primal-dual algorithm for convex problems with
applications to imaging J. Math. Imaging Vis. 40 120–45

[9] Cheng Z, Gadelha M, Maji S and Sheldon D 2019 A Bayesian perspective on the deep image prior
IEEE Conf. Computer Vision and Pattern Recognition (CVPR)

[10] Combettes P L and Pesquet J-C 2020 Deep neural network structures solving variational inequalities
Set-Valued Var. Anal. 28 491–518

[11] Combettes P L and Wajs V R 2005 Signal recovery by proximal forward-backward splitting Multi-
scale Model. Simul. 4 1168–200

[12] Daubechies I, Defrise M and De Mol C 2004 An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint Commun. Pure Appl. Math. 57 1413–57

[13] Dittmer S, Kluth T, Maass P and Otero Baguer D 2020 Regularization by architecture: a deep prior
approach for inverse problems J. Math. Imaging Vis. 62 456–70

[14] Engl H W, Kunisch K and Neubauer A 1989 Convergence rates for Tikhonov regularisation of
non-linear ill-posed problems Inverse Problems 5 523–40

[15] Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (Cambridge, MA: MIT Press)

20



Inverse Problems 38 (2022) 115005 C Arndt

[16] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio
Y 2014 Generative adversarial nets Advances in Neural Information Processing Systems vol 27 ed
Z Ghahramani, M Welling, C Cortes, N Lawrence and K Q Weinberger (Red Hook, NY: Curran
Associates, Inc.)

[17] Gregor K and LeCun Y 2010 Learning fast approximations of sparse coding Proc. 27th Int. Conf.
Int. Conf. Machine Learning, ICML’10 (Madison, WI, USA) (Omnipress) pp 399–406

[18] Habring A and Holler M 2022 A generative variational model for inverse problems in imaging SIAM
J. Math. Data Sci. 4 306–35

[19] Heckel R and Soltanolkotabi M 2020 Compressive sensing with un-trained neural networks: gradi-
ent descent finds a smooth approximation Proc. 37th Int. Conf. Machine Learning, Volume 119
of Proc. Machine Learning Research PMLR pp 4149–58

[20] Heckel R and Soltanolkotabi M 2020 Denoising and regularization via exploiting the structural bias
of convolutional generators Int. Conf. Learning Representations

[21] Hofmann B, Kaltenbacher B, Pöschl C and Scherzer O 2007 A convergence rates result for Tikhonov
regularization in Banach spaces with non-smooth operators Inverse Problems 23 987–1010

[22] Jain V and Seung S 2009 Natural image denoising with convolutional networks Advances in Neural
Information Processing Systems vol 21 ed D Koller, D Schuurmans, Y Bengio and L Bottou (Red
Hook, NY: Curran Associates, Inc.)

[23] Kaltenbacher B and Klassen A 2018 On convergence and convergence rates for Ivanov and Morozov
regularization and application to some parameter identification problems in elliptic PDEs Inverse
Problems 34 055008

[24] Kluth T, Bathke C, Jiang M and Maass P 2020 Joint super-resolution image reconstruction and
parameter identification in imaging operator: analysis of bilinear operator equations, numerical
solution, and application to magnetic particle imaging Inverse Problems 36 124006

[25] Lempitsky V, Vedaldi A and Ulyanov D 2018 Deep image prior IEEE/CVF Conf. Computer Vision
and Pattern Recognition pp 9446–54

[26] Li H, Schwab J, Antholzer S and Haltmeier M 2020 NETT: solving inverse problems with deep
neural networks Inverse Problems 36 065005

[27] Looney C G 1977 Convergence of minimizing sequences J. Math. Anal. Appl. 61 835–40
[28] Papyan V, Romano Y, Sulam J and Elad M 2018 Theoretical foundations of deep learning via sparse

representations: a multilayer sparse model and its connection to convolutional neural networks
IEEE Signal Process. Mag. 35 72–89

[29] Romano Y, Elad M and Milanfar P 2017 The little engine that could: regularization by denoising
(red) SIAM J. Imaging Sci. 10 1804–44

[30] Rudin L I, Osher S and Fatemi E 1992 Nonlinear total variation based noise removal algorithms
Physica D 60 259–68

[31] Seidman T I and Vogel C R 1989 Well posedness and convergence of some regularisation methods
for non-linear ill posed problems Inverse Problems 5 227–38

[32] Shi Z, Mettes P, Maji S and Snoek C G M 2022 On measuring and controlling the spectral bias of
the deep image prior Int. J. Comput. Vis. 130 885–908

[33] Sjoberg J and Overtraining L L 1994 regularization, and searching for minimum with application
to neural networks Int. J. Control 62 1391

[34] Sun Y, Zhao H and Scarlett J 2021 On architecture selection for linear inverse problems with
untrained neural networks Entropy 23 1481

[35] Tai Y, Yang J and Liu X 2017 Image super-resolution via deep recursive residual network 2017
IEEE Conf. Computer Vision and Pattern Recognition (CVPR) pp 2790–8

[36] Vasin V 1970 Relationship of several variational methods for the approximate solution of ill-posed
problems Math. Notes Acad. Sci. USSR 7 161–5

[37] Vogel C R 1990 A constrained least squares regularization method for nonlinear III-posed problems
SIAM J. Control Optim. 28 34–49

[38] Zou H and Hastie T 2005 Regularization and variable selection via the elastic net J. R. Stat. Soc. B
67 301–20

21





Inverse Problems

Inverse Problems 39 (2023) 125018 (37pp) https://doi.org/10.1088/1361-6420/ad0660

Invertible residual networks in the context
of regularization theory for linear inverse
problems

Clemens Arndt1, Alexander Denker1, Sören Dittmer1,2,
Nick Heilenkötter1, Meira Iske1, Tobias Kluth1,∗,
Peter Maass1 and Judith Nickel1
1 Center for Industrial Mathematics, University of Bremen, 28359 Bremen,
Germany
2 Cambridge Image Analysis Group, University of Cambridge, Cambridge CB3
0WA, United Kingdom

E-mail: tkluth@math.uni-bremen.de

Received 8 June 2023; revised 26 September 2023
Accepted for publication 24 October 2023
Published 13 November 2023

Abstract
Learned inverse problem solvers exhibit remarkable performance in applica-
tions like image reconstruction tasks. These data-driven reconstructionmethods
often follow a two-step procedure. First, one trains the often neural network-
based reconstruction scheme via a dataset. Second, one applies the scheme
to new measurements to obtain reconstructions. We follow these steps but
parameterize the reconstruction scheme with invertible residual networks
(iResNets). We demonstrate that the invertibility enables investigating the
influence of the training and architecture choices on the resulting reconstruc-
tion scheme. For example, assuming local approximation properties of the
network, we show that these schemes become convergent regularizations. In
addition, the investigations reveal a formal link to the linear regularization
theory of linear inverse problems and provide a nonlinear spectral regulariza-
tion for particular architecture classes. On the numerical side, we investigate
the local approximation property of selected trained architectures and present
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a series of experiments on the MNIST dataset that underpin and extend our
theoretical findings.

Keywords: learning for inverse problems, invertible residual networks,
convergent regularization, learned nonlinear spectral regularization,
local approximation property

(Some figures may appear in colour only in the online journal)

1. Introduction

In inverse problems, one aims to recover underlying causes from measurements by reversing
the forward measurement process. Naturally, they arise in several fields, e.g. medical imaging,
non-destructive testing, and partial differential equations (PDE)-based models. One defines
inverse problems via their ill-posed nature, i.e. reversing the measurement process is discon-
tinuous, and obtaining reasonable reconstructions requires a stable reconstruction scheme.
Usually, one defines the forward problem by possibly nonlinear forward operator A : X→ Y
mapping between Banach or Hilbert spaces. Linear spectral regularizations for linear problems
in Hilbert space settings were already well studied over two decades ago [17]. Also, more gen-
eral nonlinear regularizations, e.g. sophisticated variational and iterative approaches, were the
subject of extensive investigations for linear and nonlinear problems. We refer to the review
[9] for a more general overview of this development. More recently, the linear spectral regu-
larization approach was generalized to diagonal frames [15]. Frames provide larger flexibility
by allowing advantageous representations of the data, e.g. via a set of images, instead of solely
singular functions provided by the operator. Nonlinear spectral regularizations with nonlinear
dependence on the measurement data were only considered in a few works, e.g. in the context
of conjugate gradient methods [17, corollary 7.4].

During the last decade, these research directions have been accompanied by a highly
dynamic development of learning-based methods for inverse problems (see [4] for an earlier
review). Many promising methodological directions have arisen, such as end-to-end learned
reconstructions [20, 36], learned postprocessing [21, 41], unrolled iteration schemes [1, 18,
19], plug-and-play priors [24, 39, 43], learned penalties in variational approaches [2, 26, 28,
31, 35], (deep) generative models [10, 13], regularization by architecture [3, 14, 42], and sev-
eral more directions are developed. Besides the pure method development, an increasing num-
ber of works investigate theoretical justifications using the framework of regularization theory
(see the recent survey [32] and the more detailed consideration in section 1.1).

In the present work, we follow a general supervised learning approach for a reconstruc-
tion scheme based on the concept of invertible residual networks [8]. We use this architecture
to provide a nonlinear regularization scheme for which we develop the general convergence
theory by exploiting a local approximation property of the underlying network. Furthermore,
instead of solving the inverse problem directly, we use a training strategy that aims to approx-
imate the forward operator. We also introduce an architecture type acting on the singular func-
tion directions, and show that it provides a data-dependent nonlinear spectral regularization
which is theoretically analyzed for specific shallow architectures and it is linked to the estab-
lished linear spectral regularization theory. In addition, we underpin our theoretical findings
with several numerical experiments.

The manuscript is structured as follows: section 2 defines the problem setting and the
theoretical framework. We then investigate general regularization properties in section 3. In
section 4, we discuss specific architectures and the outcome of a training approach aiming for
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approximating the forward operator. We then relate it to the classical filter-based regulariza-
tion theory. Following the theoretical investigation, section 5 presents a series of numerical
experiments. We conclude with a discussion and outlook in section 6.

1.1. Related work

Empirically the success of learning-based methods has been established for several applic-
ations like various imaging modalities. Theoretically, there is still a gap, e.g. regarding the
convergence properties of such reconstruction schemes. Recently an increasing number of
works have examined this aspect. We recommend the excellent survey article [32], illustrating
regularization properties of some learned methods [32, figure 3].

One early example providing a convergent learned postprocessing approach is the deep null
space network [41]. It utilizes established regularization methods and turns them into learned
variants. While it replaces the concept of a minimum norm solution, it inherits convergence
guarantees. [5] investigates the convergence of regularization methods trained on a finite set
of training samples without access to the entire forward operator. Specifically, the authors
consider the projections on the subspaces spanned by the dataset. Assumptions on the dataset
ensure desired approximation properties for the convergence analysis of the regularization
method. The authors then also consider the data-dependent projected problem in a variational
Tikhonov-type framework and derive convergence of the regularization by assuming certain
approximation properties of the projection being fulfilled for the desired solution.

Also, Tikhonov-type/variationalmethods and their classical regularization theorywere used
to obtain learned regularizations with convergence guarantees. In particular, learned convex
regularizers [31, 33] and the network Tikhonov (NETT) approach [26, 35] investigated this.

Minimization of Tikhonov-type functionals is often performed by solving an equilibrium
equation, e.g. obtained from first-order optimality conditions. This concept is generalized by
the authors in the recent work [34] where a learned operator is introduced in the equilibrium
equation replacing, for example, the component delivered by the regularizer. The authors for-
mulate suitable assumptions on the learnable operator to guarantee convergence, and they also
illustrate that residual networks fulfill the desired properties if the residual part in the network
is contractive.

Ebner and Haltmeier [16] recently suggested convergence results for plug-and-play recon-
structions that are conceptionally motivated by the Tikhonov theory. They guarantee con-
vergence by assuming the required conditions on their parameterized family of denoising
operators.

The deep image prior [42] proposed exploiting a network’s training and architecture as a
regularization to achieve better image representation. Based on this concept of unsupervised
learning from one single measurement, Dittmer et al [14] derived an analytic deep prior frame-
work formulated as a bilevel optimization problem. This allowed them to verify regularization
properties for particular cases by exploiting relations to the classical filter theory of linear regu-
larizations. More recently, [3] investigated the equivalence between Ivanov regularization and
analytic deep prior. They investigated the inclusion of early stopping and proved regularization
properties [3].

An earlier work [12] proposed a data-driven approach to a learned linear spectral regulariz-
ation; more recently, [7, 22] considered convergence aspects. In [22], the authors learn a scalar
for each singular function direction in a filter-based reconstruction scheme, i.e. a linear regu-
larization scheme. Due to the assumed properties of noise and data distributions, their training
outcome is equivalent to a standard Tikhonov regularization with a data- and noise-dependent
linear operator included in the penalty term, which is diagonal with respect to the system of
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singular functions. The authors further verify convergence results concerning the data- and
noise-dependent regularization parameters.

2. Problem setting—theoretical framework

We consider linear inverse problems based on the operator equation

Ax= y, (2.1)

where A : X→ Y is a linear and bounded operator between Hilbert spaces X and Y. For sim-
plification, ‖A‖ = 1 is assumed, which can be easily obtained by a scaling of the operator.
We aim to recover the unknown ground truth x† as well as possible by only having access to a
noisy observation yδ ∈ Y such that ‖yδ −Ax†‖ ⩽ δ, where δ > 0 is the noise level.

Instead of solving (2.1) directly, we define A= A∗A and zδ = A∗yδ to get the operator
equation

Ax= A∗Ax= A∗y= z (2.2)

which only acts on X, i.e. we consider the normal equation with respect to A. We propose a
two-step data-based approach for solving (2.2), resp. (2.1), which we refer to as the iResNet
reconstruction approach:

(I) Supervised training of an invertible neural network φθ : X→ X to approximate A.
(II) Using φ−1

θ (or φ−1
θ ◦A∗, respectively) to solve the inverse problem.

In general, the supervised training covers both cases, either training on noise-free data
tuples (x(i),Ax(i)) or on noisy tuples (x(i),Ax(i) + η(i)) with noise η(i) for a given dataset
{x(i)}i∈{1,...,N} ⊂ X. To guarantee the invertibility, we use a residual network of the form

φθ (x) = x− fθ (x) (2.3)

and restrict f θ to be Lipschitz continuous with Lip( fθ) ⩽ L< 1. We refer to this architecture,
which is illustrated in figure 1, as an invertible residual network (iResNet) [8]. Note that [8]
considers concatenations of several of these invertible blocks while we focus on a single resid-
ual block.

The essential properties of the iResNets (like how it can be inverted) are summarized in the
following lemma.

Lemma 2.1 (general properties of iResNets). Let φθ, fθ : X→ X, φθ(x) = x− fθ(x), where
Lip( fθ) ⩽ L< 1. Then it holds:

(i) Lip(φθ) ⩽ L+ 1 (2.4)

(ii) Lip
(
φ−1
θ

)
⩽ 1

1−L
(2.5)

(iii) For given z ∈ X, the unique x= φ−1
θ (z) is given by x= limk→∞ xk where

xk+1 = fθ
(
xk
)
+ z (2.6)

for arbitrary and given x0 ∈ X.

Proof. The idea of the proof is taken from [8, section 2]. The first assertion follows directly
from

Lip(φθ) ⩽ Lip(Id)+Lip( fθ) . (2.7)
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Figure 1. Illustration of the residual network architecture of φθ with residual function
f θ and skip connection.

Assertion (iii) follows from the fixed point theorem of Banach. Since f θ is contractive, the
iteration convergences to a unique fixed point. This fixed point x fulfills

z= x+ fθ (x) = φ(x) . (2.8)

Finally, assertion (ii) follows from

‖φθ

(
x1
)
−φθ

(
x2
)
‖ = ‖x1 − x2 −

(
fθ
(
x1
)
− fθ

(
x2
))

‖
⩾ ‖x1 − x2‖− ‖fθ

(
x1
)
− fθ

(
x2
)
‖ ⩾ (1−L)‖x1 − x2‖ (2.9)

by replacing φθ(xi) with zi and xi with φ−1
θ (zi) for i = 1,2.

Besides, we assume the existence of a singular value decomposition (SVD) (uj,vj,σj)j∈N
of the operator A, i.e. uj ∈ Y, vj ∈ X, σj > 0 such that

Ax=
∞∑

j=1

σj〈x,vj〉uj (2.10)

holds3. All compact operators guarantee this. With respect to A, the vectors vj are eigenvectors,
and σ2

j are the corresponding eigenvalues. The system {vj}j ∈ N builds an orthonormal basis

of R(A) = R(A∗) = N (A)⊥ = N (A)⊥. Due to the assumption ‖A‖ = 1, it holds σj ∈ (0,1].

3. Regularization properties of the iResNet reconstruction

In this section, we discuss regularization properties in terms of well-definedness, stability,
and convergence of the general reconstruction approach defined by the family of operators
TL = φ−1

θ,L ◦A∗. Note that L ∈ [0,1) in the constraint of the Lipschitz constant of the residual
function undertakes the role of the regularization parameter by L→ 1, as will be made apparent
in this section.

3 In case of dim(R(A))<∞, the number of singular values is finite.
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3.1. General architecture and local approximation property

To highlight the essential dependence of the trained network on L, we write φθ,L and fθ,L in the
following. Please note that the set of possible network parameters and the underlying archi-
tecture might also depend on L. We thus consider a network parameter space Θ(L) depending
on L.

Lemma 3.1 (well-definedness and stability). For L ∈ [0,1) and θ ∈ Θ(L), let fθ,L : X→ X
be such that Lip( fθ,L) ⩽ L and φθ,L(x) = x− fθ,L(x). Then, the reconstruction scheme TL =

φ−1
θ,L ◦A∗ : Y→ X is well-defined and Lipschitz continuous.

Proof. Well-definedness follows immediately from lemma 2.1 (iii) and Lipschitz continuity
from (ii).

While well-definedness and continuity (stability) immediately follow from the construction
of the reconstruction method TL, the convergence property requires a specific approximation
property, which we must guarantee during training. We do so by introducing an index function
that generalizes the concept of convergence rates (see, e.g. [40]).

Definition 3.1. An index function is a mapping ψ : R⩾0 → R⩾0, which is continuous, strictly
increasing and it holds ψ(0) = 0.

Now, we can formulate a convergence result for the reconstruction TL(yδ) for δ→ 0 and a
suitable a priori parameter choice L(δ).

Theorem 3.1 (convergence - local approximation property). Let x† ∈ X be a solution of
the problem Ax= y for y ∈ R(A) and yδ ∈ Y fulfill ‖yδ − y‖ ⩽ δ. Furthermore, let the net-
work parameters θ(L) ∈ Θ(L) for L ∈ [0,1) be obtained in a way that the local approximation
property

‖A∗Ax† −φθ(L),L

(
x†
)
‖ = O ((1−L)ψ (1−L)) (as L→ 1) (3.1)

holds for some index function ψ.
If L : (0,∞) → [0,1) fulfills

L(δ) → 1 ∧ δ

1−L(δ)
→ 0 for δ → 0, (3.2)

then for xδL(δ) := TL(δ)(yδ) = (φ−1
θ(L(δ)),L(δ) ◦A∗)(yδ) it holds

‖xδL(δ) − x†‖ → 0 for δ → 0. (3.3)

Proof. For improved readability we write φδ := φθ(L(δ)),L(δ) and fδ := fθ(L(δ)),L(δ) in the
remainder of the proof. Using lemma 2.1, it holds

‖xδL(δ) − x†‖ ⩽ ‖φ−1
δ

(
A∗yδ

)
−φ−1

δ (A∗y)‖ + ‖φ−1
δ (A∗y) − x†‖

⩽ ‖A∗‖
1−L(δ)

‖yδ − y‖ + ‖φ−1
δ

(
A∗Ax†

)
− x†‖

⩽ δ

1−L(δ)
+ ‖φ−1

δ

(
A∗Ax†

)
−φ−1

δ

(
φδ

(
x†
))

‖

⩽ δ

1−L(δ)
+

1
1−L(δ)

‖A∗Ax† −φδ

(
x†
)
‖. (3.4)

The assertion follows due to the assumptions (3.1) and (3.2) as limL→1ψ(1−L) = 0.

6
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Remark 3.1. We can obtain a convergence rate of ‖xδL(δ) − x†‖ = O
(
δ ε/(1+ε)

)
for ε> 0,

if (3.1) is fulfilled with the index function ψ(λ) = λε, i.e.

‖A∗Ax† −φθ(L),L

(
x†
)
‖ = O

(
(1−L)1+ϵ

)
(3.5)

and by choosing 1−L(δ) ∼ δ1/(1+ε).

Remark 3.2. Note that the local approximation property (3.1) is a slightly stronger assump-
tion, which is derived by exploiting the properties of the iResNet to remove the explicit depend-
ency on the inverse within the constraint. A weaker but sufficient condition (which is implied
by (3.1)) is

‖φ−1
θ(L),L

(
A∗Ax†

)
− x†‖ → 0 as L→ 1. (3.6)

The local approximation property (3.1) provides a relation between the approximation cap-
abilities of the network architecture and the regularization properties of the iResNet recon-
struction scheme, which also contains a certain kind of source condition. Note that the pre-
vious statement differs from common convergence results, which are stated not locally but
for a broader range of solutions, i.e. for any y ∈ R(A). Here, the locality is strongly linked to
the approximation capabilities of the underlying network, which can imply certain limitations.
Thus, of particular interest for the convergence properties is the approximation property set

S= {x ∈ X |∃ index function ψ : x fulfills (3.1)} . (3.7)

There are no specific assumptions on the design of the training of the network φθ made
by (3.1). But since both architecture choice and training procedure are crucial for the resulting
network parameters θ(L), they also have a strong impact on the local approximation property
and the structure of S. This is discussed in more detail in the context of the specific shallow
architectures in section 4. In addition, we report numerical experiments regarding the local
approximation property in section 5.

A simple example illustrating the conditions under which a linear network satisfies the local
approximation property is given in the following remark.

Remark 3.3 (local approximation property for linear networks). Assume that the network
φθ,L is linear and the prediction error is bounded by ‖φθ(L(δ)),L(δ)(x(i)) −A∗yδ,(i)‖ ⩽ ζ(δ)

with ζ(δ) ∈ R on a dataset (x(i),yδ,(i))i=1,...,N with ‖Ax(i) − yδ,(i)‖ ⩽ δ. Then, for x† given by
x† =

∑N
i=1 ti x

(i) with ti ∈ R we have

∥∥∥A∗Ax† −φθ(L(δ)),L(δ)

(
x†
)∥∥∥ =

∥∥∥∥∥A
∗A

N∑

i=1

ti x
(i) −

N∑

i=1

tiφθ(L(δ)),L(δ)x
(i)

∥∥∥∥∥

⩽
N∑

i=1

|ti|∥A∗Ax(i) −φθ(L(δ)),L(δ)x
(i)∥

⩽
N∑

i=1

|ti|
(
∥A∗Ax(i) −A∗yδ,(i)∥+ ∥A∗yδ,(i) −φθ(L(δ)),L(δ)x

(i)∥
)

⩽
N∑

i=1

|ti| (δ+ ζ (δ)) . (3.8)

As as result, theorem 3.1 implies convergence of xδL(δ) to x
† if

δ+ ζ (δ)

1−L(δ)
→ 0 for δ → 0 (3.9)

7
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and if L(δ) satisfies the conditions of (3.2). This example shows that in the case that the recon-
struction error can be bounded by ζ(δ) satisfying (3.9), the convergence directly translates to
the linear span of the training data. Consequently, for test data similar to the training data, a
simple criterion, that can be numerically validated to ensure convergence to the ground truth
data, is obtained.

Similar to a source condition, (3.1) also has an influence on the type of solution
x† one approximates in the limit δ→ 0 if the operator A has a non-trivial kernel. For
example, if R( fθ(L),L) = N (A)⊥, the local approximation property enforces that PN (A)x† =
0, i.e. together with the approximation of A∗A one would consider the minimum norm solu-
tion. More generally, we can formulate the following property of S.

Lemma 3.2. Let x†1,x
†
2 ∈ S both be solutions of Ax= y for one y ∈ R(A). Then it holds

x†1 = x†2.

Proof. For abbreviation, we write fL and φL instead of fθ(L),L and φθ(L),L. Using Ax†1 = Ax†2,
it holds

‖x†1 − x†2‖
⩽ ‖x†1 −A∗Ax†1 − fL

(
x†1

)
‖ + ‖A∗Ax†1 + fL

(
x†1

)
−A∗Ax†2 − fL

(
x†2

)
‖

+ ‖A∗Ax†2 + fL
(
x†2

)
− x†2‖

= ‖φL
(
x†1

)
−A∗Ax†1‖ + ‖fL

(
x†1

)
− fL

(
x†2

)
‖ + ‖A∗Ax†2 −φL

(
x†2

)
‖

⩽ ‖A∗Ax†1 −φL

(
x†1

)
‖ +L‖x†1 − x†2‖ + ‖A∗Ax†2 −φL

(
x†2

)
‖. (3.10)

Subtracting L‖x†1 − x†2‖, it follows

(1−L)‖x†1 − x†2‖ ⩽ ‖A∗Ax†1 −φL

(
x†1

)
‖ + ‖A∗Ax†2 −φL

(
x†2

)
‖. (3.11)

Since x†1,x
†
2 both fulfill the local approximation property (3.1), there exists an index func-

tion ψ such that (1−L)‖x†1 − x†2‖ = O((1−L)ψ(1−L)) must hold. This implies ‖x†1 − x†2‖ =

O(ψ(1−L)), which is only possible for x†1 = x†2.

3.2. Diagonal architecture

In order to investigate relations to established andwell-studied spectral regularizationmethods,
we continue with the introduction of a particular network design, which is exploited in the
remainder of the manuscript. The idea of spectral regularization is to decompose the data using
the SVD (uj,vj,σj)j∈N of A and apply filter functions to the singular values. Analogously, we
consider a network architecture consisting of subnetworks fθ,j : R → R, j ∈ N, i.e.

fθ (x) =
∑

j∈N
fθ,j (〈x,vj〉)vj, (3.12)

where all the components 〈x,vj〉 of the data are processed separately. We refer to this architec-
ture as diagonal architecture, which is also illustrated in figure 2. The naming is motivated by
the similarity of the structure of f θ to a matrix multiplication with a diagonal matrix w.r.t the
basis {vj}j∈N. This architecture choice is, of course, less expressive than general architectures,

8
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Figure 2. Diagonal structure of the residual function including subnetworks fθ,j : R →
R acting on xj = ⟨x,vj⟩.

but it has the useful benefit that this way, the iResNet can be analyzed like a filter-based regu-
larization scheme. Besides, it enables us to simplify the infinite-dimensional inverse problem
Ax= y to 1D subproblems of the form σj〈x,vj〉 = 〈y,uj〉, which will be exploited in section 4.

In case of a diagonal architecture, the Lipschitz constraint Lip( fθ) ⩽ L is fulfilled if
Lip( fθ,j) ⩽ L holds for all j ∈ N, i.e. for any x,y ∈ X it holds

‖ fθ (x) − fθ (y)‖2 =
∑

j∈N
| fθ,j (〈x,vj〉) − fθ,j (〈y,vj〉) |2

⩽ L2
∑

j∈N
|〈x− y,vj〉|2 ⩽ L2‖x− y‖2. (3.13)

The local approximation property (3.1), in this case for x† ∈ N (A)⊥, implies

| fθ(L),L,j
(
x†j

)
−
(
1−σ2

j

)
x†j | = O ((1−L)ψ (1−L)) (3.14)

for any j ∈ N, where x†j = 〈x†,vj〉. Note that for infinite-dimensional operators, the constants
in O((1−L)ψ(1−L)) must be an ℓ2 sequence with respect to j to obtain the implication in
the opposite direction and thus equivalence.

The particular aim of using the diagonal architecture is now to find a filter function that
defines a spectral regularization scheme that is equivalent to TL = φ−1

θ ◦A∗. Since filter-based
regularization methods are usually linear and we want to also allow for nonlinear architectures,
our filter function rL must be data-dependent. Therefore, we define rL : R+ × R → R such that
for z ∈ R(A∗)

φ−1
θ (z) =

∑

j∈N
rL
(
σ2
j ,〈z,vj〉

)
〈z,vj〉vj, (3.15)

or for y ∈ Y

TL (y) = φ−1
θ (A∗y) =

∑

j∈N
rL
(
σ2
j ,σj〈y,uj〉

)
σj〈y,uj〉vj (3.16)

holds. The first argument of rL is the singular value (as usual), and the data-dependency comes
via the second argument. This can be seen as a nonlinear extension to the established filter

9



Inverse Problems 39 (2023) 125018 C Arndt et al

theory of linear regularization methods [27, 38], where rL would depend on σ2
j only. The sub-

networks thus play an important role in defining the filter functions via

(Id− fθ,L,j)
−1

(s) = rL
(
σ2
j ,s
)
s. (3.17)

For this to be well-defined, we need to assume that all singular values σj > 0 have amultiplicity
of one. In case of σj = σk for j 6= k (multiplicity greater than one) one must ensure that fθ,L,j and
fθ,L,k also coincide. In practice, this could be realized by sharing the weights of these networks.

Remark 3.4. Some authors define filter functions in terms of the original problemwith respect
to the generalized inverse A† such that

φ−1
θ (A∗y) =

∑

j∈N
FL (σj,〈y,uj〉)

1
σj

〈y,uj〉vj, with FL (σ,s) = σ2rL
(
σ2,σs

)
. (3.18)

Note that the choice of the representation, either in terms of rL or in terms of FL, depends on
personal preference (compare, for example, [27, 38]). In the following, we represent the filter
function in terms of rL.

One simple nonlinear dependence on s will be taken into account explicitly in the follow-
ing, as it becomes relevant in later investigations. In analogy to the bias in neural network
architectures, we consider a linear filter framework with bias, i.e.

TL (y) = b̂L +
∑

j∈N
r̂L
(
σ2
j

)
σj〈y,uj〉vj (3.19)

where b̂L ∈ X is a bias term and r̂L is a classical filter function. With additional simple assump-
tions on b̂L, this becomes a regularization method. For the sake of completeness, we provide
the following result.

Lemma 3.3 (Filter-based spectral regularization with bias). Let r̂L : [0,‖A‖2] → R be a
piecewise continuous function and let bL ∈ X for L ∈ [0,1). Furthermore, let

(i) limL→1 r̂L(σ2
j ) = 1

σ2
j
for any σj, j ∈ N,

(ii) ∃0< C<∞ : σ2
j |̂rL(σ2

j )| ⩽ C for any σj, j ∈ N and L ∈ [0,1),

(iii) b̂L ∈ X for L ∈ [0,1) and limL→1 ‖b̂L‖ = 0

hold. Let x† ∈ N (A)⊥ be a solution of the problem Ax= y for y ∈ R(A), the operator TL :
Y→ X be given by (3.19) and yδ ∈ Y with ‖y− yδ‖ ⩽ δ. In addition, let L : (0,∞) → [0,1) be
such that

L(δ) → 1 ∧ δ
√

sup
{
|̂rL(δ) (σi) |

∣∣ i ∈ N
}

→ 0 (3.20)

as δ→ 0. Then, TL is a regularization method and for xδL(δ) := TL(δ)(yδ) it holds

limδ→0 ‖xδL(δ) − x†‖ = 0.

10
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Proof. By defining x̃δL(δ) := TL(δ)(yδ) − b̂L(δ) (removing the bias), we get an ordinary linear
regularization method (see, e.g. [38, corollary 3.3.4]). It holds

‖xδL(δ) − x†‖ ⩽ ‖xδL(δ) − x̃δL(δ)‖ + ‖x̃δL(δ) − x†‖ = ‖b̂L(δ)‖ + ‖x̃δL(δ) − x†‖. (3.21)

Since ‖b̂L(δ)‖ → 0 by assumption and x̃δL(δ) → x† by standard theory, TL is a regularization
method.

4. Approximation training of specialized architectures

Besides the architecture choice and the available data, the loss function for network train-
ing is an important ingredient. Having regularization properties in mind, a natural choice for
training the iResNet is to approximate the forward operator A : X→ X, A= A∗A, on a given
training dataset {x(i)}i∈{1,...,N} ⊂ X. This is also stronglymotivated by the structure of the local
approximation property (3.1) to obtain convergence guarantees. The training of φθ = Id− fθ
then consists of solving

min
θ∈Θ

l(φθ,A) = min
θ∈Θ

1
N

∑

i

‖φθ

(
x(i)
)

−Ax(i)‖2 s.t. Lip( fθ) ⩽ L (4.1)

with L< 1 as a hyperparameter, which we refer to as approximation training. Here, we restrict
ourselves to the noise-free case as the outcome of the approximation training is independent
for N→ ∞ (assuming stochastic independence between data and noise).

In the following, we analyze to which extent φ−1
θ acts as a regularized inverse of A for

different simple diagonal iResNet architectures trained according to (4.1). We compute the
particular network parameters θ and derive the corresponding data-dependent filter function
rL : R × R → R (see section 3.2). Additionally, we check whether the local approximation
property (3.1) is fulfilled. For this purpose, the assumptions on the architecture as well as on
the dataset used for the training must be specified.

4.1. One-parameter-network—Tikhonov

We begin with a very simple linear network, which only has one single scalar learnable para-
meter. We show that this architecture is equivalent to Tikhonov regularization if trained appro-
priately.

Lemma 4.1. Let (vj,σ2
j )j be the eigenvectors and eigenvalues of A and let φθ = Id− fθ be an

iResNet which solves (4.1) with

(i) fθ = k(Id−A), where θ = k and Θ = R (architecture assumption),
(ii) the training dataset {x(i)}i∈{1,...,N} contains at least one x(i) s.t. Ax(i) 6= x(i) (dataset

assumption).

Then, the solution of (4.1) is k=L and (3.15) holds with

rL
(
σ2,s

)
=

1
L

· 1
α+σ2

, α=
1−L
L

, (4.2)

for any s ∈ R.

11
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Figure 3. The plot depicts graphs of σ2rL(σ2,s) as given in (4.2) to visualize the effect
of the regularization, which is also known as standard Tikhonov regularization.

The proof of the lemma can be found in appendix A.1. The derived filter function corres-
ponds to the Tikhonov method (with reference element)

min
x∈X

‖Ax− yδ‖2 +α‖x−A∗yδ‖2 (4.3)

as one can see by considering the first-order optimality condition, which implies

x=
∑

j

1+α

α+σ2
j

σj〈yδ,uj〉vj (4.4)

and using the fact that 1
L = 1+α. It is illustrated in figure 3. We plot σ2rL(σ2,s) since the

multiplication of the filter function with σ2 corresponds to the concatenation φ−1
θ ◦A which

emphasizes the regularizing effect.

Remark 4.1. This particular choice of the residual function f θ is one example where the local
approximation property is not fulfilled for any x† ∈ X except for eigenvectors corresponding to
σ2
1 = 1, i.e. S= span{v1}. But the linear nature and the specific spectral representation of the

residual network allow for the verification of the weaker constraint in (3.6) being highlighted in
remark 3.2 and being sufficient for convergence. For the residual function fθ(L),L = L(Id−A)

and x† ∈ N (A)⊥ we obtain

‖φ−1
θ(L),L

(
Ax†
)
− x†‖2 = ‖

(
(Id−L(Id−A))

−1A− Id
)
x†‖2

=
∑

j∈N

(
σ2
j

1−L
(
1−σ2

j

)

︸ ︷︷ ︸
=σ2

j rL(σ2
j )

− 1

)2

|〈x†,vj〉|2, (4.5)

which converges to zero for L→ 1.
Alternatively, convergence can be verified by standard arguments following, for example,

the line of reasoning in the proof of [27, theorem 3.3.3], where properties of the filter function
FL(σj) = σ2

j rL(σ
2
j ) are exploited. Since FL defines the filter function for Tikhonov regulariza-

tion and is therefore known to fulfill the desired properties, we have convergence for arbitrary
x† ∈ N (A)⊥.
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Figure 4. The plot depicts graphs of σ2r̂L(σ2) as given in (4.8) to visualize the effect of
the regularization, which is similar to the known soft TSVD regularization.

4.2. Affine linear network—squared soft TSVD

We continue with a slightly more general affine linear architecture fθ(x) =Wx+ b. It can be
observed that the linear operator W : X→ X only depends on A and L while the bias vector
b ∈ X is data dependent.

Lemma 4.2. Let (vj,σ2
j )j be the eigenvectors and eigenvalues of A and φθ = Id− fθ be an

iResNet which solves (4.1) where

(i) fθ(x) =Wx+ b, with θ = (W,b) and

Θ =



(W,b) ∈ L(X) ×X

∣∣∣∣∣∃(wj)j∈N ,(bj)j∈N : W=
∑

j∈N
wj〈·,vj〉vj, b=

∑

j∈N
bjvj



 , (4.6)

(ii) the training dataset {x(i)}i∈{1,...,N} and the mean values µj =
1
N

∑N
i=1〈x(i),vj〉 fulfill

∀j ∈ N : ∃i ∈ {1, . . .,N} : 〈x(i),vj〉 6= µj. (4.7)

Then, the solution of the training problem (4.1) is wj = min{1−σ2
j ,L}, bj = max{0,1−L−

σ2
j }µj and φ−1

θ ◦A∗ is equivalent to TL in (3.19) with

r̂L
(
σ2
)

=
1

max{σ2,1−L} , b̂L =
1

1−L

∑

j∈N
bjvj =

∑

σ2
j <1−L

1−L−σ2
j

1−L
µjvj. (4.8)

The proof of the lemma can be found in appendix A.2. The filter function is illustrated in
figure 4.

Remark 4.2. Note that a similar filter function has been found in the context of an analytic
deep prior approach for regularization [14]. The authors derived the filter function FL(σ) =
σ2r̂L(σ2), which is linear for small σ, and named it soft TSVD (soft truncated SVD). In contrast,
the filter function in (4.8) is a polynomial of degree two for small σ, which we refer to as
squared soft TSVD.

Due to the affine linear nature of the found reconstruction scheme, regularization properties
can immediately be derived by verifying certain properties of the filter function r̂L and the bias
b̂L using lemma 3.3. This is summarized in the following corollary.
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Corollary 4.1. The filter based method (3.19) with r̂L and b̂L given by (4.8) fulfills the proper-
ties (i)–(iii) in lemma 3.3, i.e. in the setting of lemma 3.3 it is a convergent regularization.

The previous result provides a link to the classical theory for linear regularization operators.
Besides the well-known classical theory, we further want to investigate the local approxim-
ation property (3.1) to verify whether the convergence property can also be obtained using
theorem 3.1. As a first step, we derive a technical source condition for x†, which implies the
local approximation property.

Lemma 4.3. Let the network φθ and the setting be that of lemma 4.2. Assume x† ∈ N (A)⊥

and let ψ be an index function such that

∃β̄ ∈ (0,1] : ∀β ∈ (0, β̄) :
∑

j: σ2
j ⩽β

〈x†,vj〉2 = O(ψ(β)2) (4.9)

holds. Then there exists another index function ψ̃ such that the local approximation prop-
erty (3.1) is fulfilled for x†.

Proof. With the setting of lemma 4.2 and the trained parameters (W, b) of the network f θ, it
holds

‖φθ(L)

(
x†
)
−Ax†‖ = ‖(Id−W)x† − b−Ax†‖ ⩽ ‖(Id−W−A)x†‖ + ‖b‖. (4.10)

Now, we estimate the convergence order of both terms w.r.t (1−L) → 0.
For the first part, we exploit the simple computations

‖(Id−W−A)x†‖2 = ‖
∑

j

(
1−wj −σ2

j

)
〈x†,vj〉vj‖2

=
∑

j

(
1−σ2

j −min
{
1−σ2

j ,L
})2 〈x†,vj〉2

=
∑

j

max
{
1−L−σ2

j ,0
}2 〈x†,vj〉2

=
∑

σ2
j ⩽1−L

(
1−L−σ2

j

)2 〈x†,vj〉2

⩽
∑

σ2
j ⩽1−L

(1−L)2 〈x†,vj〉2

= (1−L)2
∑

σ2
j ⩽1−L

〈x†,vj〉2. (4.11)

Using assumption (4.9), we obtain

(1−L)2
∑

σ2
j ⩽1−L

〈x†,vj〉2 = O
(
(1−L)2ψ (1−L)2

)
. (4.12)
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Regarding the second part, it holds

‖b‖2 =
∑

j

b2j =
∑

j

max
{
0,1−L−σ2

}2
µ2
j

=
∑

σ2
j ⩽1−L

(
1−L−σ2

j

)2
µ2
j ⩽ (1−L)2

∑

σ2
j ⩽1−L

µ2
j . (4.13)

Since the values µj form by definition (see lemma 4.2) an ℓ2 sequence, there exists an index
function ψ̃ ⩾ ψ such that

∑

σ2
j ⩽1−L

µ2
j = O

(
ψ̃ (1−L)2

)
. (4.14)

Overall, we obtain

‖(Id−W−A)x†‖ + ‖b‖ = O
(
(1−L)2 ψ̃ (1−L)2

)
, (4.15)

thus, the local approximation property (3.1) is fulfilled.

While (4.9) is quite a technical source condition, standard source conditions of the form

∃w ∈ X,µ > 0 : x† = Aµw (4.16)

imply it. In this case, the index functionψ is of the formψ(β) = βµ. The proof of the following
corollary reveals the exact relation between standard source conditions and (4.9).

Corollary 4.2. We assume that the setting of lemma 4.2 holds. Let A be compact. Then, for
any x† ∈ N (A)⊥ the local approximation property (3.1) is fulfilled (i.e. S= N (A)⊥).

Proof. Let x† ∈ N (A)⊥ be arbitrary. By construction, A= A∗A is self-adjoint and non-
negative. As A is also compact, we can deduce from [29, theorem 1]: For any ε> 0 there exists
an index function ψ : [0,1] → [0,∞) such that x† ∈ {x ∈ X |x= ψ(A)w,‖w‖ ⩽ (1+ ε)‖x†‖}.

This implies that there exists a w ∈ X such that x† = ψ(A)w. We thus obtain for β > 0

∑

σ2
j ⩽β

〈x†,vj〉2 =
∑

σ2
j ⩽β

〈ψ (A)w,vj〉2 =
∑

σ2
j ⩽β

ψ
(
σ2
j

)2 〈w,vj〉2

⩽
∑

σ2
j ⩽β

ψ (β)
2 〈w,vj〉2 ⩽ ‖w‖2ψ (β)

2 ⩽ (1+ ε)
2 ‖x†‖2ψ (β)

2
. (4.17)

By lemma 4.3, we get the desired local approximation property (3.1).

The verification of regularization properties by theorem 3.1 in terms of the local approx-
imation property is thus in line with the existing theory exploited in lemma 3.3, and it further
illustrates the character of the local approximation property combining the approximation cap-
abilities of the residual network and a source condition on the desired solution.
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4.3. Linear network with ReLU activation

In the following, we include selected nonlinearities as activation functions in a shallow net-
work, allowing for an analytical investigation of the resulting reconstruction scheme. Here,
we start with a ReLU activation, which requires a certain assumption on the training dataset
depending on the chosen nonlinearity. For simplicity, we do not include a bias in the architec-
ture, in contrast to the architecture from the last section.

Lemma 4.4. Let (vj,σ2
j )j be the eigenvectors and eigenvalues of A and φθ = Id− fθ be an

iResNet which solves (4.1) with

(i) fθ(x) = ϕ(Wx), where θ =WandΘ = {W ∈ L(X) |∃ : (wj)j∈N :W=
∑

j∈Nwj〈·,vj〉vj} and
ϕ being the ReLU function w.r.t. the eigenvectors, i.e. ϕ(x) =

∑
j∈Nmax(0,〈vj,x〉)vj,

(ii) for every eigenvector vj of A, the training dataset {x(i)}i∈{1,...,N} contains at least one x(i)

s.t. 〈x(i),vj〉> 0.

Then, the solution of (4.1) is W=
∑

j∈Nwj〈·,vj〉vj, wj = min{1−σ2
j ,L} and (3.15) holds with

rL
(
σ2,s

)
=

{
1

max{σ2,1−L} if s⩾ 0,

1 if s< 0.
(4.18)

The proof of the lemma can be found in appendix A.3. The obtained filter function is now
characterized by a varying behavior depending on the actual measurement y. This is expressed
via the variable s which represents the coefficients 〈z,vi 〉 = σi 〈y,ui 〉 (see (3.15) and (3.16)).
Whenever the coefficient is positive, the reconstruction scheme behaves like the squared soft
TSVD without bias discussed in section 4.2, i.e. they share the same filter function for those
x† ∈ N (A). In all other cases, the reconstruction method does not change the coefficients of the
data, i.e. it behaves like the identity. Due to the relationship to the squared soft TSVD, we can
immediately specify those x† fulfilling the local approximation property, i.e. for theAQPLease
provide the full form of the abbreviations ‘ReLU’ and ‘LISTA’ at their first occurrence.ReLU
network, we have

S=
{
x ∈ N (A)

⊥ |∀j ∈ N : 〈vj,x〉 ⩾ 0
}
. (4.19)

Thus, the nonlinearity in the network architecture introduces restricted approximation capab-
ilities as well as convergence guarantees on a limited subset of X only.

4.4. Linear network with soft thresholding activation

At last, wewant to analyze a network with soft thresholding activation, e.g. known fromLISTA
[18]. This function is known to promote sparsity since it shrinks all coefficients and sets those
under a certain threshold to zero. That is why only training data with sufficiently large coef-
ficients matters for the result of the training, and the condition |〈x,vj〉|> αj

L is crucial in the
following lemma.

Lemma 4.5. Let (vj,σ2
j )j be the eigenvectors and eigenvalues of A, α= (αj)j,αj ⩾ 0 andφθ =

Id− fθ be an iResNet which solves (4.1) with

(i) fθ(x) = ϕα(Wx), where θ =W, Θ = {W ∈ L(X) |∃(wj)j∈N :W=
∑

j∈Nwj〈·,vj〉vj}
and ϕα is the soft thresholding function w.r.t. the eigenvectors, i.e. ϕα(x) =∑

j∈N sign(〈x,vj〉)max(0, |〈x,vj〉|−αj)vj,
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(ii) the training data set is {x(i)}i∈{1,...,N}, where for any j ∈ N : ∃i : |〈x(i),vj〉|> αj

L .

Then, a solution of (4.1) is W=
∑

j∈Nwj〈·,vj〉vj, wj = min{ αj

pL,j
+ 1−σ2

j ,L},

pL,j =
∑

i∈Ij(L)
|⟨x(i),vj⟩|2

∑
i∈Ij(L)

|⟨x(i),vj⟩| , Ij(L) = {i ∈ {1, . . .,N}| |〈x(i),vj〉|> αj

L } and (3.15) holds with

rL
(
σ2
j ,s
)

=





1

max
{
σ2
j −

αj
pL,j

,1−L
} |s|−αj

|s| if |s|> αj

wj
,

1 if |s| ⩽ αj

wj
.

(4.20)

For singular values σ2
j = 1, wj is not uniquely determined.

The proof of the lemma can be found in appendix A.4. It follows the same line of reasoning
as in the previous sections but is more technical due to the effects of the nonlinearity.

So far, the filter function rL in lemma 4.5 is only defined on the discrete values σ2
j (and

not continuous for σ2 ∈ [0,1]) since it depends on the coefficients pL,j, αj and wj. However, if
we assume continuous extensions pL(σ2) with pL(σ2

j ) = pL,j, wL(σ2) with wL(σ2
j ) = wj, and

α(σ2) with α(σ2
j ) = αj, the function rL = rL(σ2,s) also becomes continuous. The continuity

at the point |s| = α(σ2)
wL(σ2) is assured by

1

max
{
σ2 − α(σ2)

pL(σ2) ,1−L
}

α(σ2)
wL(σ2) −α

(
σ2
)

α(σ2)
wL(σ2)

=
1−wL

(
σ2
)

max
{
σ2 − α(σ2)

pL(σ2) ,1−L
} = 1 = rL

(
σ2,s

)
. (4.21)

To be able to interpret the filter function, suitable values for s representing the coefficients
〈z,vi 〉 = σi 〈y,ui 〉 (see (3.15) and (3.16)) need to be considered. One reasonable option is to
choose s according to the data on which φθ has been trained. We thus consider an eigenvector
vj scaled with the coefficient pL,j. Since φθ minimizes (4.1), we expect φθ(pL,jvj) ≈ pL,jAvj =
pL,jσ2

j vj and φ
−1
θ (pL,jσ2

j vj) ≈ pL,jvj, respectively. Accordingly, we choose |s| proportional to
pL(σ2)σ2, i.e. |s| = γ pL(σ2)σ2 for different values γ > 0. Hence, the case γ= 1 corresponds
to a test vector zwith coefficients |〈z,vi 〉| = |s| = pL(σ2

j )σ
2
j , which perfectly fits to the training

data. Analogously, the cases γ < 1 (and γ > 1, respectively) correspond to test data whose
coefficients are smaller (or bigger, respectively) than the average coefficients of the training
data.

For γ= 1, the filter function rL can be written in a form, which allows for an easier inter-
pretation. It holds

rL
(
σ2,±pL

(
σ2
)
σ2
)

=





1 if σ2 ⩽ α(σ2)
LpL(σ2) ,

1
1−L

(
1− α(σ2)

pL(σ2)σ2

)
if

α(σ2)
LpL(σ2) < σ2 ⩽ α(σ2)

pL(σ2) + 1−L,

1
σ2 if σ2 >

α(σ2)
pL(σ2) + 1−L.

(4.22)

The derivation can be found in appendix A.5. Note that the filter function depends especially
on the quotient of α(σ2) (soft thresholding parameter) and pL(σ2) (property of training data).
To visualize the influence, we depicted the graph in figure 5 for two different (constant) values
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Figure 5. The plots depict graphs of σ2rL(σ2,±pL(σ2)σ2) as given in (4.20) and (4.22).
The choice s= pL(σ2)σ2 corresponds to the case that the test data is similar to the aver-
age training data. In this case, rL shows a quite similar behavior as the squared soft
TSVD function.

Figure 6. The plots depict graphs of σ2r(σ2,±γpL(σ2)σ2) as given in (4.20). The case
γ ̸= 1 corresponds to test data, which differs from the average training data. Especially
for larger singular values σ2 (to the right of the two kinks), the filter function shows a
suboptimal behavior compared to the squared soft TSVD filter function.

of α(σ2)
pL(σ2) . As can be seen, the graph of σ2 7→ σ2r(σ2,pL(σ2)σ2) has two kinks. The first one

depends mainly on the choice of α(σ2)
pL(σ2) , the second one mainly on the choice of L.

For γ 6= 1, the filter functions cannot be written in a similarly compact and easy form as
in (4.22). Instead, we illustrate them in figure 6. In contrast to the case of γ= 1, the graph of
σ2 7→ σ2r(σ2,pL(σ2)σ2 is not equal to one for the larger values of σ2.

Finally, we want to analyze to which extent φθ fulfills the local approximation prop-
erty (3.1). The illustration of the filter function in figure 5 implies that convergence can only
be possible if both kinks tend to zero. So, we need L→ 1 and α→ 0. Thus, the structure of the
nonlinearity (soft thresholding) has a severe influence on the regularization properties of the
reconstruction scheme. But in contrast to the ReLU architecture, the soft thresholding operator
provides the opportunity to control its similarity to a linear operator, which can be controlled
via the coefficients α. In the following lemma, we discuss in more detail how α can be chosen
depending on the regularization parameter L to obtain the desired regularization properties.

Lemma 4.6. Let all assumptions of lemma 4.5 hold. Further, assume thatA is compact and let

p† =
∑

j∈N p
†
j vj be given by p

†
j =

∑N
i=1 |⟨x(i),vj⟩|2∑N
i=1 |⟨x(i),vj⟩|

. In addition, consider x† ∈ X as well as strictly

monotonic and continuous architecture parameter choices αj,β : (0,1) → [0,∞) with

αj (L) ⩽ p†j β (L) ,with β (L) = O ((1−L)ψ (1−L)) (4.23)

for an index function ψ : [0,1] → [0,∞).
Then, the local approximation property (3.1) holds for any x† ∈ N (A)⊥.
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Proof. We first verify that pL,p† ∈ X (pL =
∑

j∈N pL,jvj). For this, we exploit for each j ∈ N
that

|〈x(i),vj〉|∑N
i=1 |〈x(i),vj〉|

⩽ 1 (4.24)

for any i. We thus obtain via Young’s inequality

‖p†‖2 =
∑

j∈N

(
p†j

)2
⩽
∑

j∈N

(
N∑

i=1

|〈x(i),vj〉|
)2

⩽ 2N−1
N∑

i=1

‖x(i)‖2 <∞. (4.25)

Analogously for pL. Due to the finite nature of the data set and the properties of α we imme-
diately have pL → p† for L→ 1 and pL = p† for L being sufficiently close to 1.

We now continue with the approximation property, making use of the notation xj := 〈x†,vj〉
and a sufficiently large L< 1 where wj = min{αj(L)

p†j
+ 1−σ2

j ,L} ⩾ 0:

‖φθ(L)

(
x†
)
−Ax†‖2 =

∑

j∈N

(
max(0,wj|xj| −αj (L)) −

(
1−σ2

j

)
|xj|
)2

⩽ 2
∑

j∈N

(
1−σ2

j −wj
)2 |xj|2 +(wj|xj| −max(0,wj|xj| −αj (L)))

2

= 2
∑

j∈N

(
1−σ2

j −wj
)2 |xj|2 +(max(0,wj|xj|) −max(0,wj|xj| −αj (L)))

2

⩽ 2
∑

j∈N

(
1−σ2

j −wj
)2 |xj|2 +αj (L)

2

⩽ 2
∑

j∈N

(
1−σ2

j −wj
)2 |xj|2 + 2β (L)2 ‖p†‖2 (4.26)

due to Young’s inequality, the Lipschitz continuity of the ReLU function, and the assumption
on αj. We further obtain

∑

j∈N

(
1−σ2

j −wj
)2 |xj|2 =

∑

j:σ2
j ⩽1−L+

αj(L)

p†j

(
1−σ2

j −wj
)2 |xj|2

︸ ︷︷ ︸
=:(I)

+
∑

j:σ2
j >1−L+

αj(L)

p†j

(
1−σ2

j −wj
)2 |xj|2

︸ ︷︷ ︸
=:(II)

. (4.27)
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We thus need to derive estimates for (I) and (II).

(I) =
∑

j:σ2
j ⩽1−L+

αj(L)

p†j

(
1−σ2

j −L
)2 |xj|2

⩽
∑

j:σ2
j ⩽1−L+β(L)

(
1−σ2

j −L
)2 |xj|2

⩽
∑

j:σ2
j ⩽1−L

(
1−σ2

j −L
)2 |xj|2 +

∑

j:σ2
j >1−L∧σ2

j ⩽1−L+β(L)

(
1−σ2

j −L
)2 |xj|2

⩽
∑

j:σ2
j ⩽1−L

(1−L)2 |xj|2 +
∑

j:σ2
j >1−L∧σ2

j ⩽1−L+β(L)

β (L)2 |xj|2

⩽ (1−L)2
∑

j:σ2
j ⩽1−L

|xj|2 +β (L)2 ‖x†‖2, (4.28)

where we again exploit Young’s inequality and the properties of aj. For (II) we immediately
obtain

(II) =
∑

j:σ2
j >1−L+

αj(L)

p†j

(
αj (L)

p†j

)2

|xj|2 ⩽ β (L)2 ‖x†‖2. (4.29)

Due to the properties of β, (II) already has the desired characteristics for L→ 1. In contrast,
(I) requires some further calculations. Following the same line of reasoning as in the proof of
corollary 4.2 we can find an index function ψ ′ for any ε> 0 such that

∑

j:σ2
j ⩽1−L

〈x†,vj〉2 ⩽ (1+ ε)
2 ‖x†‖2ψ ′ (1−L)2

= O
(
ψ ′ (1−L)2

)
. (4.30)

Combining this with (4.26), (4.28) and (4.29) we obtain the desired result.

Remark 4.3. Analogous to the line of reasoning in the proof of lemma 4.3, we split the series
into two sums, (I) and (II). (I) takes care of small singular values and needs to be related to a
property of the element x† in terms of a certain kind of source condition. The second sum (II)
is somehow related to the approximation properties of the underlying architecture. In the proof
of lemma 4.3 it is immediately zero for any x† which is due to the linear network assumption
therein. In contrast, in the previous proof we had to carefully control the behavior of this term
since it is strongly influenced by the structure of the nonlinearity.

In general, the previous lemma serves as an example of the interplay between the approx-
imation capabilities of the network and the resulting regularization properties.

5. Numerical experiments

In this section, we present numerical results in order to compare our theoretical findings from
section 3 and section 4 to its corresponding numerical implementations and extend these by
experiments in a more general setting by learning from noisy measurements. To this end, we
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Figure 7. Illustration of the subnetworks fθ,j : R → R, j = 1, . . . ,n. Each having 1366
trainable parameters.

use a Radon transform with 30 angles and 41 detector pixels as our forward operator. We
discretize the Radon transform for 28× 28 px images. This results in a linear forward oper-
ator A : R28×28 → R30×41. For the training of the different iResNet architectures, we use the
well-known Modified National Institute of Standards and Technology (MNIST) dataset of
handwritten digits [25]. This dataset is split into 60 000 images for training and 10 000 images
for testing. For our experiments, we treat the 28× 28 images as column vectors of length 784
and use fully connected layers in all network architectures. We optimize the networks using
Adam [23] and a learning rate scheduling scheme.

There aremultiple ways to satisfy the Lipschitz constraint during training. Bungert et al [11]
use an additional penalty term in the loss function. However, this method does not strictly
enforce the constraint. Behrmann et al [8] use contractive nonlinearities and only constrain
the Lipschitz constant of each individual linear mapping. They compute the Lipschitz constant
using a power iteration and normalize the weights after each training step. We observe an
improvement of convergence when directly parameterizing the weights to fulfill a specific
Lipschitz constant by extending the approach in [30].

In section 5.1, we show experiments on the local approximation property in theorem 3.1. To
this end, we use the diagonal architecture proposed in section 3.2. The resulting data-dependent
filter functions are visualized in section 5.2, and the convergence property is considered in
section 5.3.

We implement each subnetwork fθ,j, j = 1, . . . ,n, (see (3.12)) as a small fully-connected
neural network with independent weights for each j, where n denotes the total number of sin-
gular values in the discrete setting. Each subnetwork consists of three layers, where the first two
layers fkθ,j, k= 1,2 each contain 35 hidden neurons, and its final layer f3θ,j contains 1 neuron.
Every layer is equipped with a linear matrix multiplication and corresponding additive bias and
a ReLU activation function (k= 1,2). Accordingly, each subnetwork has 1366 trainable para-
meters. An illustration of the architecture is provided in figure 7. Altogether, the parameters
of the subnetworks determine the parameters θ ∈ Θ(L) of φθ = Id− fθ, where Θ(L) includes
the network parameters as well as the Lipschitz constraint being realized by constraints on
the network parameter. Here, we enforce the Lipschitz constants Lip( fθ,j) ⩽ L, j = 1, . . . ,n,

by constraining Lip( fkθ,j) ⩽ 1 for k= 1,2 and Lip( f3θ,j) ⩽ L. In the following, we thus write
θ(L) in order to give emphasis to the regularization parameter. Our training objective is the
minimization of the approximation loss (4.1), i.e. minimize the loss
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l(φθ,A) =
1
N

∑

i

‖φθ(x
(i)) −Ax(i)‖2 (5.1)

subject to Lip( fθ) ⩽ L.
The source code corresponding to the experiments in this section is openly available [44].

5.1. Local approximation property

According to theorem 3.1, we expect φ−1
θ(L) to act as a regularizer as soon as the local approx-

imation property (3.1) is fulfilled. Note that the architecture does not change for varying L in
our experiments such that we write φθ(L) instead of φθ(L),L. To be able to observe this behavior
of our trained network, the local approximation property needs to be verified with respect to
the trained network parameters. Therefore, we evaluate the approximation error with respect
to fixed data samples

Ex(i)
(
φθ(L),A

)
= ‖φθ(L)(x

(i)) −Ax(i)‖ (5.2)

as well as the mean approximation error over the test data set

Emean
(
φθ(L),A

)
=

1
N

∑

i

‖φθ(L)(x
(i)) −Ax(i)‖. (5.3)

Figure 8 indicates superlinear convergence of Emean for L→ 1, i.e. the existence of an index
function ψ such that the local approximation property (3.1) is satisfied within our test data set
on average. This underpins the capability of the chosen network architecture and training to
locally approximate the operator A in terms of (3.1). Furthermore, the evaluation of Ex(1) shows
that the chosen sample x(1) fulfills the superlinear convergence and behaves very similarly to
the mean error over the test data set. However, from the selection of data sample x(2) and
corresponding error Ex(2) , we notice that the local approximation property does not hold for
all samples of our test data set. Figure 8 additionally shows that some coefficients x(2)j of

x(2), corresponding to large singular values, severely deviate from the corresponding mean
values with respect to the data distribution. This effect is reduced for x(1). Therefore, the slow,
respectively non-, convergence of Ex(2) could possibly be explained by the fact that structures
outside of the core of the distribution of chosen singular values have not been learned properly
during network training.

5.2. Data-dependent filter functions for diagonal architecture

For the experiments in this and the subsequent section, we train networks φθ(L) with Lipschitz

bounds L ∈ {Lm = 1− 1/3m |m= 1, . . .5}. We also include additive Gaussian noise in the
network training via minimizing the approximation loss (4.1). More precisely, for each
training sample x(i) we generate Ax(i) + η(i) with η(i) ∼ N (0, δℓId) and relative noise level
δℓ = δ̂ℓ · stdMNIST, where stdMNIST denotes the averaged standard deviation of the coefficients
〈x(i),vj〉 of the MNIST data set (standard deviation with respect to i, mean with respect to j)
and

δ̂ℓ =

{(
1
3

)7−ℓ
for 0< ℓ < 7

0 for ℓ= 0.
(5.4)
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Figure 8. Test samples x(1) and x(2) (left). Evaluations of
Emean(φθ(Lm),A), Ex(1)(φθ(Lm),A) and Ex(2)(φθ(Lm),A) for Lm = 1− 1/2m with
m= 1, . . . ,8 on the MNIST test data set (middle). Squared absolute differences of the
coefficients x(k)j = ⟨x(k),vj⟩ for k= 1,2 to the mean value of corresponding coefficients
in the test data set (right).

The loss function l then amounts to

min
θ∈Θ(L)

l(φθ,A) = min
θ∈Θ(L)

1
N

N∑

i=1

‖φθ(x
(i)) −Ax(i) − η(i)‖2. (5.5)

Note that this includes (4.1) in the noise-free case. Trained networks on noisy samples with
noise level δ with a particular Lipschitz bound L are denoted byφθ(L,δ). The noise-free training
outcome is denoted by φθ(L).

Utilizing identical network architectures as in the previous subsection, we evaluate the
learned filter functions of chosen networks. Analogously to (3.19) the reconstruction can be
written as

TL (y) = φ−1
θ (A∗y) = b̂L +

∑

j∈N
r̂L(σ

2
j ,σj〈y,uj〉)σj〈y,uj〉vj (5.6)

for b̂L ∈ X= Rn. As stated in section 3.2, the learned filter function of a trained network with
diagonal architecture follows immediately from its subnetworks. Due to the additional bias,
we make a small adaption to (3.17), which gives

(Id− fθ,j)
−1

(s) − b̂L,j = rL(σ
2
j ,s)s for s ∈ R, (5.7)

where each entry b̂L,j = 〈bL,vj〉 corresponds to the axis intercept of a subnetwork φθ,j, j =

1, . . . ,n, i.e. b̂L,j = (Id− fθ,j)−1(0). Since fθ,j corresponds to σj or σ2
j , respectively, we also

write b̂L,j = b̂L(σ2
j ).

Adapting to the mean values with respect to the distribution of each coefficient, we compute

µj :=
1
N

N∑

i=1

〈x(i),vj〉 for j = 1, . . . ,n (5.8)

and evaluate the filter function with respect to its second variable at the continuous extension
σ2µ(σ2) with µ(σ2

j ) = µj, j = 1, . . . ,n.
From figure 9 we notice that the regularization of smaller singular values increases with

decreasing Lipschitz bound L for the mean MNIST data sample. This is in line with the regu-
larization theory, as L serves as our regularization parameter. Thus, the filter plots in figure 9
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Figure 9. Learned filter functions rL(σ2,σ2µ(σ2)) of the iResNet with diagonal archi-
tecture and zero noise level δ0 for different Lipschitz constraints L (left)where the eigen-
values σ2

j are highlighted as black bullets on the x-axis. ∥b̂L∥ corresponding to the axis

intersection b̂L =
∑

j b̂L,jvj, evaluated for Lm, m= 1, . . . ,5 (right).

visualize how L acts as a regularization parameter. The trained diagonal networks φθ(Lm) for
L2 and L5 show a slightly different behavior at σ2

j ≈ 0.27. The distributions of the coefficients
〈x,vj〉j=1,...,n are treated independently and in this particular singular value we observed a
wider distribution of coefficients 〈x,vj〉 in the dataset. The inherent structure within the dataset
might be one possible explanation for this outlier. In general, when neglecting the previously
mentioned outlier, for the mean MNIST sample one can observe a similarity to the squared
soft TSVD filter function (see section 4.2) to some extent. In addition, the observed decay of
‖b̂L‖ with increased L is also in line with the necessary condition for a classical filter function
with bias to become a convergent regularization (see lemma 3.3). The observed increase for
the largest L is most likely caused by a numerical instability when evaluating (Id− fθ,j)−1(0)
via the fixed point iteration performed for 30 iterations.

Figure 10 includes reconstructions of a fixed sample from the test data set. This example
illustrates the effect of a regularization induced by the Lipschitz bound even if the training
takes noise into account. It becomes stronger for small values of L, which coincides with our
previous observations. Reconstructions resulting from increased noise levels require stronger
regularizations in order to improve reconstruction quality. Therefore, the best reconstructions
in case of δ̂0 and δ̂1 result from φ−1

θ(L3,δ0)
and φ−1

θ(L3,δ1)
. In comparison, φ−1

θ(L2,δ4)
and φ−1

θ(L2,δ3)

provide improved reconstructions for the cases δ̂4 and δ̂3. Moreover, at L1 we notice similar
blurred structures in the background of the reconstructed digit for all noise levels. One might
argue that its structure compares to a handwritten digit itself, making the learned background
pattern being encoded in the bias b̂L suitable to the data set. These additional observations
from figure 10 indicate a dependency of the regularization on learned data structures. The
corresponding filter functions being illustrated in the right column of figure 10 show a similar
behavior for all training noise levels which underpins that the outcome of the approximation
training is independent of the noise for a sufficiently large number of training samples. The
outlier in the filter function for the mean sample (µj)j can also be observed in figure 10. In
addition, this test sample has a slightly different behavior with respect to the second singular
value. Note that the seemingly linear behavior for σ2

j > 0.4 is only due to the fact that this is
the linear continuous extension between the first and second singular value. In summary, the
resulting filter behaves similarly to the squared soft TSVD filter independent of the training
noise and with exceptions at two singular values.
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Figure 10. Reconstructions of an MNIST sample x̃ from the test data set by computing
φ−1

θ(Lm,δℓ)
(Ax̃+ η̃) with η̃ ∼N (0, δℓId) for Lipschitz bounds Lm (columns) and noise

levels δℓ = δ̂ℓ · stdMNIST with ℓ = 0,1,3,4 (rows). The last column depicts the filter func-
tions at L1, L2, and L3 for each noise level with respect to the sample x̃.

5.3. Convergence property

After investigating approximation capabilities of trained networks with respect to the oper-
ator A in section 5.1 in the noise-free case and extending the training to the noisy case in
section 5.2, we continue verifying the convergence property with respect to different noise
levels. We analyze the convergence property by computing the averaged reconstruction error

MSEδℓ
reco

(
φθ(L,δ),A

)
=

1
N

N∑

i=1

‖x(i) −φ−1
θ(L,δ)(Ax

(i) + η(i))‖2, (5.9)

including the noise levels δℓ and noise samples η(i) ∼ N (0, δℓId) in the reconstruction process
where the network has been trained on noise level δ. We thus can evaluate the noise-free train-
ing case, which solely aims to impart data dependency, on reconstructions from noisy data,
and the noisy training case where training and test noise share the same level. Reconstructions,
i.e. the inverse of the iResNet, are obtained by using 30 fixed point iterations.

Figure 11 shows thatφ−1
θ(L,δ0)

as well asφ−1
θ(L,δℓ)

providesmore accurate reconstructions with
respect to (5.9) at large L and low noise levels, whereas this behavior is reversed for decreasing
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Figure 11. Reconstruction errors MSEδℓ
reco(φθ(L,δ0),A) with training on noise-free

samples and reconstruction from noisy samples (left) and MSEδℓ
reco(φθ(L,δℓ),A) with

training and reconstruction on the same noise level δℓ (right) for φθ(Lm,δℓ) over different
noise levels δℓ = δ̂ℓ · stdMNIST, ℓ = 0, . . . ,6, and Lipschitz bounds Lm, m= 1, . . . ,5.

Lipschitz bound and increasing noise levels. This is consistent with the regularization theory
and the visualized reconstructions in figure 10, as high noise levels require strong regulariza-
tions and vice versa. The behavior of MSEδℓ

reco(φθ(L,δℓ),A) for small L and small noise levels
δℓ is rather intuitive, since its approximation capability is limited as a consequence of strong
regularization. In addition, from figure 11 one can also extract a suitable candidate for the
parameter choice L(δ) to obtain convergence. The similarity in the behavior of φ−1

θ(L,δ0)
and

φ−1
θ(L,δℓ)

underpins that the outcome of the approximation training is independent of noise if
data and noise are independent.

6. Discussion and outlook

In the present work, we developed and investigated the regularization theory for the proposed
iResNet reconstruction approach providing a learned method from data samples. The net-
work’s local approximation property is fundamental to delivering a convergent regularization
scheme. It comprises approximation properties of the architecture and training, a definition of
solution type, and a source condition. The approximation loss used for training is motivated
by this property. In the most general version, the framework can be understood as a fully-
learned end-to-end reconstruction scheme with minor limitations as it relies on the concat-
enation with A∗, i.e. some a priori knowledge on the forward operator is at least included
in a hand-crafted way in the reconstruction scheme. Introducing a diagonal architecture type
relying on the SVD of the forward operator A allowed for an analytical investigation of the
resulting learned nonlinear spectral reconstruction method, which becomes a convergent reg-
ularization when fulfilling the local approximation property. The analysis of trained shallow
architectures revealed the link between the classical linear filter-based regularization theory
and the concept of the local approximation property, and it illustrated the interplay between
the approximation capability of the nonlinear network and the source condition. In addition,
we validated and extended the theoretical findings by a series of numerical experiments on
the MNIST data set and provided further insights into the learned nonlinear spectral regular-
ization, such as similarity to the analytically determined linear regularization (squared soft
TSVD) and data-dependency of the learned regularization.
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Our iResNet method using the diagonal architecture can be seen as a generalization of the
learned linear spectral regularization considered in [22]. Using a different loss, whichmeasures
the reconstruction error, the authors of [22] obtain learned filter functions corresponding to
Tikhonov regularization with data- and noise-dependent regularization parameters for each
singular vector. An extension of the iResNet approach to this kind of training loss is thus
desirable for future comparison.

The present work also serves as a starting point for various future research directions:
As we obtain the inverse of the residual network via a fixed point iteration, findings in the

context of the iResNet reconstructionmay be related to learned optimizationmethods [6], max-
imally monotone operators [37], or potentially to plug-and-play methods [16]. Investigations
at the interface to these methods are far beyond the present work and will remain future work.

The concept of a local criterion to guarantee convergence of the iResNet reconstruction
method provides further opportunities to investigate the regularization properties of learned
reconstruction schemes. In a different context, Aspri et al [5] also consider a local property.
They consider a learned projection onto subspaces concatenated with the forward operator,
i.e. they consider a projected linear problem and combine it with Tikhonov regularization.
There, the authors guarantee convergence of the regularization method by the Tikhonov the-
ory, including a different but also localized assumption. The findings in the present work and
the literature thus reveal the necessity to explicitly take the approximation capabilities of the
learned schemes and the training procedure into account. Immediate future research includes
a comprehensive numerical study on how architectural choices such as particular activation
functions, e.g. being strictly monotone but nonlinear, influence the desired regularization prop-
erties and reconstruction quality. Further potential future investigations in this context are two-
fold. On the one hand, one may exploit universal approximation properties of the underlying
architectures to guarantee convergence for a sufficiently large subset of X, e.g. by verifying the
local approximation property. On the other hand, onemay adapt the definition of regularization
to the approximate and data-based nature of the learning-based setting.

Besides themore general open research questions at the interface to other methods and data-
based concepts, the iResNet reconstruction approach itself provides various potential future
works. The observed similarity of the learned nonlinear filter functions in the numerical exper-
iments to the analytical solution of the affine network with bias (section 4.2) immediately
raises the question: How much does the data’s structure influence the resulting reconstruc-
tion scheme? Phrased differently, one needs to test the limits of the proposed approximation
training. Here, it would be desirable to change the perspective to a Bayesian one considering
data and noise distributions and further investigate the training outcome, including additional
variations of the training loss and its influence on the local approximation property. Natural
extension and generalizations, such as including learned solution types, e.g. by combining our
approachwith null space networks [41] or relaxing the diagonal assumption of the architecture,
remain future work.

In summary, the present first work on learned iResNet regularization schemes builds the
basis for various future works of theoretical and numerical nature.
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Appendix. Proofs of section 4

A.1. Proof of lemma 4.1

Equivalent filter function to the one-parameter-network.

Proof. At first, we observe that the Lipschitz constraint in (4.1) is fulfilled for |k| ⩽ L. Thus,
(4.1) is equivalent to

min
|k|⩽L

∑

i

‖φθ(x
(i)) −Ax(i)‖2

⇔ min
|k|⩽L

∑

i

‖x(i) − kx(i) + kAx(i) −Ax(i)‖2

⇔ min
|k|⩽L

∑

i

(1− k)2 ‖x(i) −Ax(i)‖2. (A.1)

Since there is one x(i) s.t. Axi 6= x(i) the solution is obviously k=L and we have φθ(x) =
x−L(x−Ax).

Now we use the SVD of A to solve φθ(x̄) = z for z ∈ R(A) component wise. For all j ∈ N
it holds

〈x̄−L(x̄−Ax̄) ,vj〉 = 〈z,vj〉
⇔ (1−L)〈x̄,vj〉 +L〈x̄,Avj〉 = 〈z,vj〉
⇔

(
1−L+Lσ2

j

)
〈x̄,vj〉 = 〈z,vj〉

⇔ 〈x̄,vj〉 =
1

1−L+Lσ2
j

〈z,vj〉 (A.2)

Thus, the filter function

rL
(
σ2,s

)
=

1
1−L+Lσ2

=
1
L

· 1
α+σ2

, α=
1−L
L

(A.3)

fulfills (3.15).

A.2. Proof of lemma 4.2

Equivalent filter function to the linear network.

Proof. At first, we observe that the Lipschitz constraint in (4.1) is fulfilled if the eigenval-
ues (wj)j of W are restricted by |wj| ⩽ L. Defining ΘL =

{
(W,b) ∈ Θ

∣∣ |wj| ⩽ L
}
, (4.1) is

equivalent to
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min
θ∈ΘL

N∑

i=1

‖φθ

(
x(i)
)

−Ax(i)‖2

⇔ min
(W,b)∈ΘL

N∑

i=1

∥∥∥x(i) −Wxi − b−Ax(i)
∥∥∥
2

⇔ min
(W,b)∈ΘL

N∑

i=1

‖PN (A)

(
x(i)
)

‖2 +
∥∥∥PN (A)⊥

(
x(i)
)

−Wxi − b−Ax(i)
∥∥∥
2
. (A.4)

The part with PN (A)(x(i)) is independent of W and b and therefore not relevant. Furthermore,
it holds

PN (A)⊥

(
x(i)
)

−Wxi − b−Ax(i) =
∑

j∈N
〈x,vj〉vj −

∑

j∈N
(wj〈x,vj〉 + bj)vj −

∑

j∈N
σ2
j 〈x,vj〉vj

=
∑

j∈N

((
1−wj −σ2

j

)
〈x,vj〉− bj

)
vj. (A.5)

Thus, the minimizing problem can be written as

min
|wj|⩽L,(bj)∈ℓ2

N∑

i=1

∑

j∈N

((
1−wj −σ2

j

)
〈x,vj〉− bj

)2
. (A.6)

We can solve this problem for each j separately. For determining bj we set the derivative to
zero and get

0
!
= −2

N∑

i=1

((
1−wj −σ2

j

)
〈x(i),vj〉− bj

)

⇔ bj
!
=

1
N

(
1−wj −σ2

j

) N∑

i=1

〈x(i),vj〉 =
(
1−wj −σ2

j

)
µj. (A.7)

Since for every i, the sequence (〈x(i),vj〉)j∈N is in ℓ2, (bj) ∈ ℓ2 is also fulfilled. It remains to
solve

min
|wj|⩽L,

N∑

i=1

((
1−wj −σ2

j

)
(〈x,vj〉−µj)

)2
. (A.8)

By assumption, for every vj there is at least one x(i) s.t. 〈x(i),vj〉 6= µj, thus, the problem can be
simplified to

min
|wj|⩽L

(
1−wj −σ2

j

)2 ∀j ∈ N. (A.9)

The obvious solution is wj = min{1−σ2
j ,L}, since 1−σ2

j is by assumption always positive.
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Now we use the SVD of A to solve φθ(x̄) = z for some z ∈ R(A) component-wise. For all
j ∈ N it holds

〈x̄,vj〉−wj〈x̄,vj〉− bj = 〈z,vj〉
⇔ (1−wj)〈x̄,vj〉 = 〈z,vj〉 + bj

⇔ 〈x̄,vj〉 =
1

1−wj
〈z,vj〉 +

bj
1−wj

⇔ 〈x̄,vj〉 =
1

max
{
σ2
j ,1−L

} 〈z,vj〉 +
max

{
0,1−L−σ2

j

}

max
{
σ2
j ,1−L

} µj. (A.10)

Thus, using the filter function and bias

r̂L
(
σ2
)

=
1

max{σ2,1−L} , b̂L =
∑

σ2
j <1−L

1−L−σ2

1−L
µjvj, (A.11)

the reconstruction schemes φ−1
θ ◦A∗ and TL from (3.19) are equivalent.

A.3. Proof of lemma 4.4

Equivalent filter function to the ReLU-network.

Proof. At first, we observe that the Lipschitz constraint in (4.1) is fulfilled if the eigenvalues
(wj)j of W are restricted by |wj| ⩽ L. Thus, (4.1) is equivalent to

min
(wj), |wj|⩽L

∑

i

‖φθ

(
x(i)
)

−Ax(i)‖2

⇔ min
(wj), |wj|⩽L

∑

i

∥∥∥x(i) −ϕ(Wxi) −Ax(i)
∥∥∥
2

⇔ min
(wj), |wj|⩽L

∑

i

∥∥∥∥PN (A)

(
x(i)
)

+
∑

j∈N
〈x(i),vj〉vj −

∑

j∈N
max

{
0,wj〈x(i),vj〉

}
vj

−
∑

j∈N
σ2
j 〈x(i),vj〉vj

∥∥∥∥
2

⇔ min
(wj), |wj|⩽L

∑

i

∥∥∥PN (A)

(
x(i)
)∥∥∥

2
+

∥∥∥∥
∑

j∈N

((
1−σ2

j

)
〈x(i),vj〉−max

{
0,wj〈x(i),vj〉

})
vj

∥∥∥∥
2

⇔ min
(wj), |wj|⩽L

∑

i

∑

j∈N

(
(1−σ2

j )〈x(i),vj〉−max
{
0,wj〈x(i),vj〉

})2
. (A.12)

At first we focus on the components 〈x(i),vj〉 which are negative or zero. They do not influence
the solution of the problem since

min
|wj|⩽L

(
−
(
1−σ2

j

)
−max{0,−wj}

)2 ∀j ∈ N (A.13)
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is solved by any wj ∈ [0,L], as 1−σ2
j is by assumption always positive. Thus, it suffices to

consider the cases 〈x(i),vj〉> 0, which lead to

min
|wj|⩽L

(
1−σ2

j −max{0,wj}
)2 ∀j ∈ N. (A.14)

The obvious solution is wj = min{1−σ2
j ,L}.

Now we use the SVD of A to solve φθ(x̄) = z for z ∈ R(A) or

x̄−
∑

j∈N
max{0,wj〈x̄,vj〉}vj =

∑

j∈N
〈z,vj〉vj, (A.15)

respectively, component-wise. For all j ∈ N it holds

〈x̄,vj〉−max{0,wj〈x̄,vj〉} = 〈z,vj〉
⇔ min{〈x̄,vj〉,(1−wj)〈x̄,vj〉} = 〈z,vj〉. (A.16)

Since 1−wj > 0, the signs of 〈x̄,vj〉 and 〈z,vj〉 must coincide. In case of positive signs, the
minimum on the left hand side takes the value (1−wj)〈x̄,vj〉, in case of negative signs, it is
〈x̄,vj〉. Thus, we get

〈x̄,vj〉 =

{
1

1−wj
〈z,vj〉 if 〈z,vj〉 ⩾ 0,

〈z,vj〉 if 〈z,vj〉< 0.
(A.17)

Using 1−wj = max{σ2
j ,1−L}, it can be seen that

rL
(
σ2,s

)
=

{
1

max{σ2,1−L} if s⩾ 0,

1 if s< 0
(A.18)

fulfills (3.15).

A.4. Proof of lemma 4.5

Equivalent filter function to the soft-thresholding-network.

Proof. At first, we observe that the Lipschitz constraint in (4.1) is fulfilled if the eigenvalues
(wj)j of W are restricted by |wj| ⩽ L. Besides, fθ(x) can be written as

ϕα (Wx) =
∑

j∈N
sign(〈Wx,vj〉)max(0, |〈Wx,vj〉|−αj)vj

=
∑

j∈N
sign(wj〈x,vj〉)max(0, |wj〈x,vj〉|−αj)vj. (A.19)
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For any x(i) from the training data set, it follows

x(i) −ϕα

(
Wx(i)

)
−Ax(i)

= PN (A)

(
x(i)
)

+
∑

j∈N
〈x(i),vj〉vj −

∑

j∈N
sign

(
wj〈x(i),vj〉

)
max

(
0, |wj〈x(i),vj〉|−αj

)
vj

−
∑

j∈N
σ2
j 〈x(i),vj〉vj

= PN (A)

(
x(i)
)

+
∑

j∈N

[
x(i)j − sign

(
wjx

(i)
j

)
max

(
0, |wjx(i)j | −αj

)
−σ2

j x
(i)
j

]
vj (A.20)

where x(i)j := 〈x(i),vj〉. Therefore, (4.1) is equivalent to

min
(wj), |wj|⩽L

∑

i

‖φθ

(
x(i)
)

−Ax(i)‖2

⇔ min
(wj), |wj|⩽L

∑

i

∥∥∥x(i) −ϕα

(
Wx(i)

)
−Ax(i)

∥∥∥
2

⇔ min
(wj), |wj|⩽L

∑

j

∑

i

(
x(i)j − sign

(
wjx

(i)
j

)
max

(
0, |wjx(i)j | −αj

)
−σ2

j x
(i)
j

)2
. (A.21)

For each j, we have to find the solution of

min
|wj|⩽L

∑

i

(
x(i)j − sign

(
wjx

(i)
j

)
max

(
0, |wjx(i)j | −αj

)
−σ2

j x
(i)
j

)2

⇔ min
|wj|⩽L

∑

i

((
1−σ2

j

)
sign

(
x(i)j

)
|x(i)j | − sign(wj)sign

(
x(i)j

)
max

(
0, |wjx(i)j | −αj

))2

⇔ min
|wj|⩽L

∑

i

((
1−σ2

j

)
|x(i)j | − sign(wj)max

(
0, |wjx(i)j | −αj

))2
. (A.22)

Note that for σ2
j = 1, any wj ∈

[
− αj

max(i) |x(i)j |
,

αj

maxi |x(i)j |

]
solves the problem and hence the solu-

tion is not unique. In all other cases, we have 1−σ2
j > 0, thus, only a positive sign of wj makes

sense and we restrict ourselves to this case. Due to wj ⩾ 0, we have

((
1−σ2

j

)
|x(i)j | −max

(
0, |wjx(i)j | −αj

))2

=





((
1−σ2

)
x(i)j

)2
if |wjx(i)j | ⩽ αj,((

1−σ2
j −wj

)
|x(i)j | +αj

)2
if |wjx(i)j |> αj.

(A.23)

As the first case is an upper bound of the second case, it is highly desirable to choose wj large
enough such that all training samples are contained in the second case. But we also need to
take into account the upper boundwj ⩽ L. Due to the data set assumption (ii), the minimization
problem (A.22) becomes

min
wj∈[0,L]

∑

i∈Ij(L)

((
1−σ2

j −wj
)
|x(i)j | +αj

)2
. (A.24)
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The minimizer is

wj =

{
αj

pj
+ 1−σ2

j if αj

pj
+ 1−σ2

j ⩽ L,

L else,
(A.25)

where pL,j = pj =
∑

i∈Ij(L)
|x(i)j |2

∑
i∈Ij(L)

|x(i)j |
. Equivalently, we can write wj = min{αj

pj
+ 1−σ2

j ,L}.
Now we use the SVD of A to solve φθ(x̄) = z for z ∈ R(A) or

x̄−
∑

j∈N
sign(wj〈x̄,vj〉)max(0, |wj〈x̄,vj〉|−αj)vj =

∑

j∈N
〈z,vj〉vj, (A.26)

respectively, componentwise. For all j ∈ N it holds

〈x̄,vj〉− sign(wj〈x̄,vj〉)max(0, |wj〈x̄,vj〉|−αj) = 〈z,vj〉
⇔ sign(〈x̄,vj〉)(|〈x̄,vj〉|−max(0,wj|〈x̄,vj〉|−αj)) = 〈z,vj〉. (A.27)

Thus, the sign of 〈x̄,vj〉 is the same as the one of 〈z,vj〉. Assuming wj|〈x̄,vj〉| ⩽ αj, we obtain

|〈x̄,vj〉| = |〈z,vj〉| if |〈z,vj〉| ⩽ αj
wj

(A.28)

and assuming wj|〈x̄,vj〉|> αj, we obtain

|〈x̄,vj〉| =
|〈z,vj〉|−αj

1−wj
if

|〈z,vj〉|
1−wj

− αj
1−wj

>
αj
wj
. (A.29)

In total, this leads to

〈x̄,vj〉 =

{
〈z,vj〉 if |〈z,vj〉| ⩽ αj

wj
,

sign(〈z,vj〉) |⟨z,vj⟩|−αj

1−wj
if |〈z,vj〉|> αj

wj
.

(A.30)

Using 1−wj = max{σ2
j − αj

pj
,1−L}, we see that the filter function

rL
(
σ2
j ,s
)

=





1 if |s| ⩽ αj

wj
,

1

max
{
σ2
j −

αj
pj
,1−L

} |s|−αj

|s| if |s|> αj

wj
(A.31)

fulfills (3.15). FL is then derived by exploiting (3.18).

A.5. Computation of filter function (4.22)

Assuming continuous extensions pL(σ2) s.t. pL(σ2
j ) = pL,j,wL(σ2) s.t.wL(σ2

j ) = wj, andα(σ2)

s.t. α(σ2
j ) = αj, we can write the filter function from lemma 4.5 as

rL
(
σ2,s

)
=





1

max

{
σ2− α(σ2)

pL(σ2)
,1−L

} |s|−α(σ2)
|s| if |s|> α(σ2)

wL(σ2) ,

1 if |s| ⩽ α(σ2)
wL(σ2) .

(A.32)

Besides, it holds wL(σ2) = min
{

α(σ2)
pL(σ2) + 1−σ2,L

}
⩽ L, also by lemma 4.5. Now, we choose

|s| = pL(σ2)σ2 and distinguish between three different cases (small, medium and large values
of σ2).
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At first, we consider the case σ2 ⩽ α(σ2)
LpL(σ2) . Then, it holds

|s| = pL
(
σ2
)
σ2 ⩽

α
(
σ2
)

L
⩽
α
(
σ2
)

wL (σ2)
. (A.33)

Thus, it follows

rL
(
σ2,±pL

(
σ2
)
σ2
)

= 1. (A.34)

Secondly, we consider the case α(σ2)
LpL(σ2) < σ2 ⩽ α(σ2)

pL(σ2) + 1−L. We shortly make sure, that
the lower bound is in fact smaller than the upper one. The assumptions of lemma 4.5 imply

that pL(σ2)> α(σ2)
L holds. From this, we can follow

pL
(
σ2
)
(1−L)>

α
(
σ2
)

L
− Lα

(
σ2
)

L

⇒ α
(
σ2
)
+ pL

(
σ2
)
(1−L)>

α
(
σ2
)

L

⇒ α
(
σ2
)

pL (σ2)
+ 1−L>

α
(
σ2
)

LpL (σ2)
. (A.35)

Besides, note that σ2 ⩽ α(σ2)
pL(σ2) + 1−L implies wL(σ2) = L. Thus, it holds

|s| = pL
(
σ2
)
σ2 >

α
(
σ2
)

L
=
α
(
σ2
)

wL (σ2)
. (A.36)

Accordingly, we obtain

rL
(
σ2,±pL

(
σ2
)
σ2
)

=
1

max
{
σ2 − α(σ2)

pL(σ2) ,1−L
} pL

(
σ2
)
σ2 −α

(
σ2
)

pL (σ2)σ2

=
1

1−L

pL
(
σ2
)
σ2 −α

(
σ2
)

pL (σ2)σ2
=

1
1−L

(
1− α

(
σ2
)

pL (σ2)σ2

)
. (A.37)

At last, we consider the case σ2 > α(σ2)
pL(σ2) + 1−L. Note that this implies wL(σ2) = α(σ2)

pL(σ2) +

1−σ2. Besides it holds σ2 − α(σ2)
pL(σ2) > 0, which implies

(
σ2 − α

(
σ2
)

pL (σ2)

)
(
1−σ2

)
> 0

⇒ σ2

(
α
(
σ2
)

pL (σ2)
+ 1−σ2

)
>
α
(
σ2
)

pL (σ2)

⇒ |s| = pL
(
σ2
)
σ2 >

α
(
σ2
)

α(σ2)
pL(σ2) + 1−σ2

=
α
(
σ2
)

wL (σ2)
. (A.38)
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Accordingly, we obtain

rL
(
σ2,±pL

(
σ2
)
σ2
)

=
1

max
{
σ2 − α(σ2)

pL(σ2) ,1−L
} pL

(
σ2
)
σ2 −α

(
σ2
)

pL (σ2)σ2

=
1

σ2 − α(σ2)
pL(σ2)

pL
(
σ2
)
σ2 −α

(
σ2
)

pL (σ2)σ2

=
pL
(
σ2
)
σ2 −α

(
σ2
)

(pL (σ2)σ2 −α(σ2))σ2
=

1
σ2
. (A.39)

Thus, in total, it holds

rL
(
σ2,±pL

(
σ2
)
σ2
)

=





1 if σ2 ⩽ α(σ2)
LpL(σ2) ,

1
1−L

(
1− α(σ2)

pL(σ2)σ2

)
if

α(σ2)
LpL(σ2) < σ2 ⩽ α(σ2)

pL(σ2) + 1−L,

1
σ2 if σ2 >

α(σ2)
pL(σ2) + 1−L.

(A.40)
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Abstract
Learning-based methods for inverse problems, adapting to the data’s inherent
structure, have become ubiquitous in the last decade. Besides empirical invest-
igations of their often remarkable performance, an increasing number of works
address the issue of theoretical guarantees. Recently, Arndt et al (2023 Inverse
Problems 39 125018) exploited invertible residual networks (iResNets) to
learn provably convergent regularizations given reasonable assumptions. They
enforced these guarantees by approximating the linear forward operator with an
iResNet. Supervised training on relevant samples introduces data dependency
into the approach. An open question in this context is to which extent the data’s
inherent structure influences the training outcome, i.e. the learned reconstruc-
tion scheme. Here, we address this delicate interplay of training design and data
dependency from a Bayesian perspective and shed light on opportunities and
limitations. We resolve these limitations by analyzing reconstruction-based
training of the inverses of iResNets, where we show that this optimization
strategy introduces a level of data-dependency that cannot be achieved by
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approximation training. We further provide and discuss a series of numerical
experiments underpinning and extending the theoretical findings.

Keywords: iResNet, learned regularization, linear inverse problems,
Bayesian inverse problems

1. Introduction

The mathematical field of inverse problems has many applications, e.g. imaging, image pro-
cessing, and several more. Inverse problems come with characteristic difficulties summarized
under the term ‘ill-posedness.’ Typically, one wants to recover causes x, which discontinuously
depend on some observed measurements z. However, a good reconstruction algorithm needs
to be stable; otherwise, it cannot handle noisy measurement data. Still, one naturally wants
the reconstructor to be as accurate as possible. This results in a compromise called regulariz-
ation (see [6] for a recent survey on regularization theory). The more stable the reconstructor
becomes, the more the set of causes for which it provides accurate results is restricted.

Hence, this set of accurate performance is critical, and one typically chooses it using prior
knowledge about the application-specific data. In imaging problems, this knowledge often
amounts to solutions x looking somehow ‘natural.’ However, the mathematical characteriz-
ation of natural images is challenging. Thus, learned methods often outperform in this area,
learning stable and accurate reconstructions from given training data (see, e.g. the early survey
[4]).

While many experimental studies confirm the impressive performance of learned meth-
ods, the theoretical understanding remains limited. In particular, learned methods often lack
stability guarantees. However, the topic is gaining in importance [21]. In the present work,
we address this issue by studying invertible residual networks (iResNets) [5]. As proposed in
[3], their invertibility makes them readily applicable to linear inverse problems. Arndt et al
[3] approximates the forward operation (x 7→ z) using the iResNet, the iResNet’s inverse, then
solves the inverse problem (z 7→ x). Here, one can control the regularization strength by choos-
ing a hyperparameter of the iResNet that directly controls its stability.

Arndt et al [3] also develop a regularization theory for these iResNets. For this purpose,
they considered particular architectures and uncovered equivalences to filter functions from
classical regularization theory. In the present article, we now analyze what iResNets actually
learn in practice from the given training data. For this purpose, the Bayesian view is suitable,
as it encodes prior knowledge on x and the measurement noise in z as probability distributions.
We consider two different ways of training, via the forward and via the inverse mapping, and
investigate to which extent the iResNet uses the given information about the data to regularize
inverse problems.

The manuscript is structured as follows: Section 2 introduces the problem setting, basic
assumptions, and the reconstruction approach using iResNets. The subsequent two sections
contain the theoretical analysis of the iResNet’s training in a Bayesian setting. First, section 3
considers the so-called approximation training, where the network is trained supervisedly
to approximate the forward operator. In particular, we investigate what information the net-
work learns from the training data distribution (i.e. the effect of prior distribution and noise
on the network). Second, section 4 considers the so-called reconstruction training, where the
iResNet’s inverse is trained to map from noisy measurements to a reconstruction. Section 5
complements the theoretical analyses with extensive numerical experiments. We implement
the two training types and underpin the theoretical findings of the previous sections.
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1.1. Related literature

The Bayesian theory for inverse problems differs from the functional analytic regularization
theory. While the functional analytic theory focuses mainly on the stability and convergence of
regularization operators, the Bayesian perspective considers the full posterior distribution and
uncertainty estimation for reconstructions. Detailed introductions are given in [9, 12, 25]. An
overview of the basic theory and Bayesian methods for solving inverse problems is also con-
tained in [4]. Learning-based methods are particularly powerful for solving Bayesian inverse
problems, e.g. Adler and Öktem [1] describes two different general concepts for an efficient
application of neural networks in this framework.

Laumont et al [16] proposes a method that demonstrates the Bayesian theory’s advant-
ages for inverse problems using a trained denoiser in a plug-and-play Langevin algorithm.
The denoiser is assumed to fulfill a Lipschitz condition (similar to the iResNet, see section 2),
implying guaranteed convergence of the algorithm to the posterior distribution. Sherry et al
[24] leverages convex analysis to create nonexpansive residual networks and uses them to
solve inverse problems. This is particularly desirable for denoising and plug-and-play schemes.
Furthermore, invertible neural networks are also of interest to generative modeling. In [8],
iResNets act as normalizing flows, i.e. learn to map from a base distribution to a target distribu-
tion and perform competitive or even superior to alternative architectures. Similar to iResNets,
[22] also makes use of invertibility and Lipschitz constraints to get a suitable architecture for
the use in convergent Gauss-Newton methods. Arndt et al [3] provides a more detailed dis-
cussion of the literature concerning learned convergent regularization schemes. Similar to our
work, [19] also addresses Bayesian analysis of learning forward and inverse problems. But
there, the focus is on a certain 2×2-example and a trivial linear network architecture to illus-
trate some general properties.

2. Problem setting and basic properties

We consider linear inverse problems based on the operator equation

Ax= z (2.1)

where A ∈ L(X,X) is a self-adjoint and positive semidefinite operator and X is a finite-
dimensional inner product space, here X= Rn. For simplification, we assume ‖A‖ = 1, which
a scaling of the operator can easily obtain. In practice, neural network domains tend to be finite-
dimensional; this justifies the restriction to the finite-dimensional case. Also, the Bayesian per-
spective becomes less standard if the underlying probability theory uses infinite-dimensional
probability spaces, and the presented theory would require the extension to Bochner integrals.
We, however, expect our observations to generalize to the infinite-dimensional case and aim
to treat this in future research.

Due to the properties of A, there exist eigenvalues σ2
j ∈ (0,1] and corresponding eigen-

vectors vj, such that N (A)⊥ = span{vj | j = 1, . . . , ñ}, ñ⩽ n. We use this eigendecomposition
in some of our theoretical analyses.

The aim is to recover the unknown ground truth vector x† as well as possible by only having
access to a noisy observation zδ = Ax† + η. The noise η is assumed to be distributed according
to a probability density function (pdf) pH : X→ R⩾0. Since there may exist arbitrarily many
solutions x which could explain the data zδ , it is important to incorporate prior knowledge
about the unknown solutions. The pdf pX : X→ R⩾0 encodes this knowledge. In practice, pX
may describe the distribution of natural-looking images or the typical structure of a cross-
section of the human body (e.g. in CT problems).
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To solve the inverse problem (2.1), we use the approach of [3], i.e. we approximate the
forward operator A with a (single-layer) invertible residual network (iResNet)

φθ = Id− fθ, (2.2)

where fθ : X→ X is some residual function modeled as a (small) neural network. This is done
by a supervised training ofφθ for which a paired dataset {x(i),zδ,(i)}i=1,...,N of i.i.d. (independ-
ent and identically distributed) samples x(i) ∼ pX, zδ,(i) −Ax(i) ∼ pH is needed. One can then
use the trained network to compute a regularized solution of (2.1) by φ−1

θ (zδ). Invertibility of
φθ is guaranteed using the constraint

Lip( fθ) ⩽ L (2.3)

for some L< 1, where the inverse is stable and fulfills Lip(φ−1
θ ) ⩽ 1/(1−L) (see [3, lemma

2.1], [5]).

Remark 2.1. The assumption of a positive semidefinite forward operator A is due to the fact
that the invertibility condition (2.3) can also be interpreted as some kind of monotonicity con-
dition for φθ. Thus, φθ cannot approximate arbitrary linear operators but in particular positive
(semi-)definite ones.

A more general linear inverse problem

Ãx= y (2.4)

with an arbitrary linear operator, Ã ∈ L(X,Y) (X and Y being different spaces), can be translated
into the above setting by considering A= Ã∗Ã and z= Ã∗y.

In this case the noise η on zmay arise from noise η̃ on y via η = Ã∗η̃. To illustrate this, let us
consider the example of Gaussian noise η̃ ∼ N (0,Σ). Then, it holds η = Ã∗η̃ ∼ N (0, Ã∗ΣÃ),
which means that Ã∗ transforms the covariance matrix Σ. If Ã has a nontrivial nullspace, the
distribution of Ã∗η̃ is singular, and there exists no pdf. Nevertheless, it is possible to approx-
imate the distribution, e.g. by adding ε Id to the covariance matrix or restricting the problem
to N (Ã)⊥.

While implicit knowledge about pX and pH via the given dataset is sufficient for training
φθ, we derive some theoretical results using these pdfs explicitly. For this purpose, we need to
make the following assumptions.

Assumption 2.1. Let

• pX : X→ R⩾0 be a pdf
(
i.e.
´
X pX(x)dx= 1

)
with existing first and second moments (i.e.

pX(x)‖x‖ and pX(x)‖x‖2 are Lebesgue-integrable) and expected value

µX =

ˆ
X
pX (x)xdx, (2.5)

• pH : X→ R⩾0 be a pdf
(
i.e.
´
X pH(η)dη = 1

)
with existing first and second

moments (i.e. pH(η)‖η‖ and pH(η)‖η‖2 Lebesgue-integrable) and zero expectation(
i.e.
´
X pH(η)ηdη = 0

)
, and

• the random variables x∼ pX, η ∼ pH be stochastically independent.

The crucial condition to guarantee the invertibility of φθ is Lip( fθ) ⩽ L< 1. Consequently,
the inverse ψθ = φ−1

θ fulfills a property describable as a combination of coercivity and
Lipschitz-continuity, which, in turn, trivially implies strong monotonicity. We formulate this
equivalence in the following lemma.
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Lemma 2.1 (inverse of iResNet). For φ : X→ X and 0 ⩽ L< 1, the following two conditions
are equivalent:

(1) ∃ f : X→ X with Lip( f) ⩽ L such that φ = Id− f
(2) ∃ψ : X→ X with

∀z1,z2 ∈ X :
(
1−L2

)
‖ψ (z1) −ψ (z2)‖2 + ‖z1 − z2‖2 ⩽ 2〈z1 − z2,ψ (z1) −ψ (z2)〉

(2.6)

such that φ = ψ−1.

In particular, (2.6) guarantees the invertibility of ψ.

Proof. We begin with (1) ⇒ (2). For arbitrary x1,x2 ∈ X, the condition Lip(Id−φ) ⩽ L
implies

‖(x1 −φ(x1)) − (x2 −φ(x2))‖2 ⩽ L2‖x1 − x2‖2

⇔ ‖x1 − x2‖2 − 2〈x1 − x2,φ(x1) −φ(x2)〉 + ‖φ(x1) −φ(x2)‖2 ⩽ L2‖x1 − x2‖2

⇔
(
1−L2

)
‖x1 − x2‖2 + ‖φ(x1) −φ(x2)‖2 ⩽ 2〈x1 − x2,φ(x1) −φ(x2)〉.

(2.7)

Since Lip( f) ⩽ L implies invertibility of φ (see [3, lemma 2.1], [5]), we can define ψ = φ−1

and zi = φ(xi). This yields

(
1−L2

)
‖ψ (z1) −ψ (z2)‖2 + ‖z1 − z2‖2 ⩽ 2〈z1 − z2,ψ (z1) −ψ (z2)〉 (2.8)

for arbitrary z1,z2 ∈ X.
For the converse implication, we now prove that (2.6) guarantees the invertibility of ψ.

Injectivity and Lipschitz continuity follow directly by applying the Cauchy–Schwarz inequal-
ity to (2.6), which yields

‖z1 − z2‖2 ⩽ 2‖z1 − z2‖‖ψ (z1) −ψ (z2)‖, (2.9)
(
1−L2

)
‖ψ (z1) −ψ (z2)‖2 ⩽ 2‖z1 − z2‖‖ψ (z1) −ψ (z2)‖. (2.10)

To prove surjectivity, we construct a convergent sequence (zk) such that ψ(zk) converges to an
arbitrary x ∈ X. We recursively define

zk+1 = zk +
(
1−L2

)
(x−ψ (zk)) , z0 ∈ X. (2.11)

It can be observed that

2〈x−ψ (zk) ,ψ (zk+1) −ψ (zk)〉 = 2〈zk+1 − zk,ψ (zk+1) −ψ (zk)〉
1

1−L2

⩾ ‖ψ (zk+1) −ψ (zk)‖2 +
1

1−L2
‖zk+1 − zk‖2

= ‖ψ (zk+1) −ψ (zk)‖2 +
1

1−L2
‖
(
1−L2

)
(x−ψ (zk))‖2

= ‖ψ (zk+1) −ψ (zk)‖2 +
(
1−L2

)
‖x−ψ (zk)‖2 (2.12)

5
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holds. Using this, it follows

‖x−ψ (zk+1)‖2 = ‖(x−ψ (zk)) − (ψ (zk+1) −ψ (zk))‖2

= ‖x−ψ (zk)‖2 − 2〈x−ψ (zk) ,ψ (zk+1) −ψ (zk)〉 + ‖ψ (zk+1) −ψ (zk)‖2

⩽ ‖x−ψ (zk)‖2 −‖ψ (zk+1) −ψ (zk)‖2 −
(
1−L2

)
‖x−ψ (zk)‖2 + ‖ψ (zk+1) −ψ (zk)‖2

= L2‖x−ψ (zk)‖2. (2.13)

Thus, we have ‖x−ψ(zk+1)‖ ⩽ L‖x−ψ(zk)‖, which implies ‖x−ψ(zk)‖ ⩽ Lk‖x−ψ(z0)‖.
Hence, it holds ψ(zk) → x and (2.6) guarantees convergence of (zk). Since x was arbitrary, ψ
is surjective and therefore invertible. With the argumentation from the beginning in reversed
order, we obtain the implication (2) ⇒ (1).

The following remark simplifies condition (2.6) for X= R.

Remark 2.2. In case of X= R (one-dimensional space), condition (2.6) becomes

∀z1,z2 ∈ R :
1

1+L
⩽ ψ (z1) −ψ (z2)

z1 − z2
⩽ 1

1−L
, (2.14)

which is a constraint on the slope of ψ from above and from below.

This motivates us to think of the condition on ψ as a Lipschitz constraint similar to the
one that applies to an iResNet. The following remark shows a direct connection between the
iResNet and its inverse.

Remark 2.3 (inverses of iResNets are iResNets). From lemma 2.1, we can deduce that one
can write the inverse of an iResNet as a scaled iResNet. The constraint (2.6) is equivalent to

(
1−L2

)2
‖ψ (z1)−ψ (z2)‖2 − 2

(
1−L2

)
〈z1 − z2,ψ (z1)−ψ (z2)〉+ ‖z1 − z2‖2 ⩽ L2‖z1 − z2‖2

⇔‖
(
Id−

(
1−L2

)
ψ
)

(z1)−
(
Id−

(
1−L2

)
ψ
)

(z2)‖ ⩽ L‖z1 − z2‖

⇔ Lip
(
Id−

(
1−L2

)
ψ
)

⩽ L. (2.15)

By defining g := Id− (1−L2)ψ we obtain

ψ =
1

1−L2
(Id− g) where Lip(g) ⩽ L, (2.16)

which is a scaled iResNet Id− g where g satisfies the same Lipschitz constraint as f in the
forward mapping.

3. Approximation training

In [3], the approximation training is introduced, in which the iResNet φθ is trained to approx-
imate A, i.e. to solve

min
θ∈ΘL

1
N

N∑

i=1

∥∥∥φθ
(
x(i)
)

− zδ,(i)
∥∥∥
2

(3.1)

6
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for a given dataset of N pairs (x(i),zδ,(i)) ∈ X×X, zδ,(i) = Ax(i) + η(i). The parameter space
ΘL encodes the architecture choice, and the Lipschitz constraint Lip( fθ) ⩽ L. This setting
was partly motivated by the so-called local approximation property ([3, theorem 3.1]) char-
acterizing convergence guarantees for the regularized solution φ−1

θ (zδ) as δ→ 0. In [3], spe-
cific network architectures were trained according to the approximation training and analyzed
under which conditions they satisfy the properties of a convergent regularization scheme. This
revealed a connection to the classical linear filter-based regularization theory.

In contrast, we now aim to derive more general results without making restrictions on the
architecture of the iResNet apart from the constraint on the Lipschitz constant of f. This enables
us to analyze the influence of the noise and prior distribution on the trained network and,
especially, the regularized solution. To this end, we consider the case of an infinite amount of
training data, allowing us to interpret equation (3.1) from a Bayesian point of view. To be more
precise, taking the limit N→ ∞ in equation (3.1) and exploiting the independence of x and η
(assumption 2.1) results in

min
θ∈ΘL

Ex∼pXEη∼pH

(
‖φθ (x) −Ax− η‖2

)
. (3.2)

The Euclidian norm can be decomposed into ‖φθ(x) −Ax− η‖2 = ‖φθ(x) −Ax‖2 −
2〈φθ(x) −Ax,η〉 + ‖η‖2. Again, because of the independence of x and η and due to
EpH(η) = 0, the mixed term vanishes in expectation. Therefore, we obtain

min
θ∈ΘL

Ex∼pX

(
‖φθ (x) −Ax‖2 + Eη∼pH

(
‖η‖2

))

⇔ min
θ∈ΘL

Ex∼pX

(
‖φθ (x) −Ax‖2

)
. (3.3)

Consequently, the noise does not influence the training.We could interpret this positively since
the noise cannot lead to approximation errors of φθ. However, a big drawback is that φ−1

θ ,
which shall regularize the inverse problem, neither depends on the noise level. Accordingly,
the amount of regularization has to be set manually by choice of L for the noise level δ (see
[3]) and is not data-dependent.

What remains is the influence of the prior distribution pX on the training of φθ. We are
especially interested in howφθ acts on the different eigenspaces ofA to analyze the dependence
on the size of the eigenvalues. Therefore, we make the rather strong assumption of stochastic
independence of the components xj = 〈x,vj〉:
Assumption 3.1. Let xj ∼ pX,j with pX(x) =

∏
j pX,j(xj).

Observe that this assumption is implicitly made, for example, when using Tikhonov regu-
larization with ‖ · ‖2-penalty term. Furthermore, assumption 2.1 implies that pX,j has existing
first and second moments with

µX,j =

ˆ
R
pX,j (xj)xj dx, (3.4)

which follows from Fubini’s theorem and the independence of the components. In this setting,
a diagonal structure of the network

fθ (x) =
∑

j

fj,θ (〈x,vj〉)vj with fj,θ : R → R, (3.5)

with respect to eigenvectors vj of A, which was also used in [3], is sufficient to account for
the structure of the distribution according to assumption 3.1. Hence, the above minimization

7
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problem can be analyzed for each component separately due to properties of the eigendecom-
position, and we get

min
θ∈ΘL

Exj∼pX,j

(
|
(
1−σ2

j

)
xj − fj,θ (xj) |2

)
. (3.6)

This is equivalent to a 1d-setting with A : R → R, xj 7→ σ2
j xj.

In the following, instead of minimizing over a parameter space ΘL, we directly consider a
function space F encoding the Lipschitz constraint (Lip( f) ⩽ L) and the architecture choice.
For simplicity, in what follows, we omit the index j and consider

min
f∈F

ˆ
R
pX (x) |

(
1−σ2

)
x− f(x) |2 dx. (3.7)

IfF allows for (affine) linear functions and in case of 1−σ2 ⩽ L, we can indicate the trivial
solution f = (1−σ2) Id. Obviously, this solution is unique on supp(pX). Thus, for eigenval-
ues σ2, which are not too small, the training leads to a perfect approximation of the forward
operator and no regularization of the inverse problem. For 1−σ2 > L, the minimization prob-
lem gets more interesting due to the Lipschitz constraint. First, we derive the following result,
which builds the basis for a subsequent generalization.

Lemma 3.1. Let F = {f ∈ C(R) |∃m ∈ [−L,L],b ∈ R : f(x) = mx+ b} and L< 1−σ2.
Then,

f∗ (x) = Lx+
(
1−σ2 −L

)
µX (3.8)

is the unique solution of the minimization problem (3.7).

Proof. The minimizer can be calculated by using the necessary KKT conditions. A detailed
proof can be found in appendix A.1.

The previous lemma provides the prerequisite for the following theorem, where F contains
arbitrary Lipschitz continuous functions with constrained Lipschitz constant.

Theorem 3.1. Let F = {f ∈ C0,1(R) |Lip( f) ⩽ L}, where C0,1 denotes the Hölder space of
Lipschitz continuous functions. Then,

f∗ (x) =

{(
1−σ2

)
x if 1−σ2 ⩽ L,

Lx+
(
1−σ2 −L

)
µX if 1−σ2 > L

(3.9)

is the solution of the minimization problem (3.7). This solution is unique on supp(pX) and for
1−σ2 > L even on the convex hull of supp(pX).

8
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Proof. We define F : F → R,

F( f) =

ˆ
R
pX (x) |

(
1−σ2

)
x− f(x) |2 dx (3.10)

and start with the case 1−σ2 ⩽ L. Obviously, it holds F( f∗) = 0, so f∗ is a minimizer. Using
the fundamental lemma of the calculus of variations, one can deduce the uniqueness on
supp(pX).

Now, consider 1−σ2 > L and let g ∈ C0,1(R), Lip(g) ⩽ L be an arbitrary function. We will
show that F(g)> F( f∗) holds, if g 6= f∗ on the convex hull of supp(pX).

First, we verify that F is well-defined, i.e, for f ∈ F

F( f) ⩽ 2
ˆ
R
pX (x)

((
1−σ2

)2
x2 + |f(x) |2

)
dx

= 2
ˆ
R
pX (x)

((
1−σ2

)2
x2 + |f(x) − f(0)+ f(0) |2

)
dx

⩽ 2
ˆ
R
pX (x)

(
1−σ2

)2
x2 dx+ 4

ˆ
R
pX (x) |f(x) − f(0) |2 dx+ 4

ˆ
R
pX (x) |f(0) |2 dx

⩽ 2
(
1−σ2

)2ˆ
R
pX (x)x2 dx+ 4L2

ˆ
R
pX (x)x2 dx+ 4f(0)2 <∞ (3.11)

holds, as the second moment of pX exists.
Due to L< 1−σ2, the function g has always a smaller slope than (1−σ2) Id, which implies

that there exists an intersection point x0 such that g(x0) = (1−σ2)x0. The affine linear function
f̃(x) = L(x− x0)+ (1−σ2)x0 possesses the same intersection point.

In case of g= f̃ on the convex hull of supp(pX), we simply apply lemma 3.1. This shows
that g can be the minimizer only if f̃= f∗.

In the case of g 6= f̃, let us examine the integrand of F(g). For any x ∈ R, it holds

|
(
1−σ2

)
x− g(x) |2 = |

(
1−σ2

)
x−
(
g(x) − f̃(x)

)
− f̃(x) |2

= |
(
1−σ2

)
x− f̃(x) |2 − 2

((
1−σ2

)
x− f̃(x)

)(
g(x) − f̃(x)

)

+ |g(x) − f̃(x) |2. (3.12)

For x⩽ x0, we have (1−σ2)x− f̃(x) ⩽ 0 and Lip(g) ⩽ L implies g(x) − f̃(x) ⩾ 0. Thus, we
obtain

−2
((
1−σ2

)
x− f̃(x)

)(
g(x) − f̃(x)

)
⩾ 0, (3.13)

which implies |(1−σ2)x− g(x)|2 ⩾ |(1−σ2)x− f̃(x)|2. Analogously, for x⩾ x0, we observe
that (1−σ2)x− f̃(x) ⩾ 0 and g(x) − f̃(x) ⩽ 0, which also implies |(1−σ2)x− g(x)|2 ⩾
|(1−σ2)x− f̃(x)|2. Therefore, it holds F(g) ⩾ F(̃f).

Finally, we show that F(g) = F(̃f) implies f̃= g on the convex hull of supp(pX). If F(g) =
F(̃f), it holds ˆ

Ω

pX (x) |
(
1−σ2

)
x− g(x) |2 − pX (x) |

(
1−σ2

)
x− f̃(x) |2 dx= 0. (3.14)

for any measurable Ω ⊂ R, since the term under the integral is always greater than or equal to
zero. The fundamental lemma of the calculus of variations then implies

pX (x) |
(
1−σ2

)
x− g(x) |2 = pX (x) |

(
1−σ2

)
x− f̃(x) |2 (3.15)

9



Inverse Problems 40 (2024) 045021 C Arndt et al

Figure 1. The residual function f∗ which results from the approximation training (the-
orem 3.1) is affine linear and only depends on σ2, L and µX . In case of σ2 < 1− L, f∗

exhibits the maximum possible slope of L and intersects (1−σ)2 Id at the mean µX of
the prior distribution.

for all x ∈ R (since g and f̃ are continuous). Thus, for any x ∈ supp(pX), it holds g(x) = f̃(x)
and for x1,x2 ∈ supp(pX), we obtain g(x1) − g(x2) = L(x1 − x2). Consequently, for any x in
between of x1 and x2, g(x) = f̃(x) must also hold, otherwise Lip(g) ⩽ L would be violated.
Hence, g and f̃ coincide on the convex hull of supp(pX).

Figure 1 exemplifies the solution f∗ for a Gaussian mixture prior pX. The inverse φ
−1
θ cor-

responding to the minimizer of (3.7) derived in the previous theorem provides a convergent
regularization scheme, which we discuss in the following remark.

Remark 3.1. Due to the affine linear structure of f∗, one can express φ−1
θ as an affine filter-

based regularization scheme. The affine linear diagonal architecture was already analyzed in
[3, lemma 4.2], i.e. for

fj (xj) = min
{
1−σ2

j ,L
}
xj +max

{
0,1−σ2

j −L
}
µX,j (3.16)

(which coincides with the solution f∗ in (3.9) in theorem 3.1), it holds

φ−1
θ (z) = b̂L +

∑

j

r̂L
(
σ2
j

)
〈z,vj〉vj, (3.17)

r̂L
(
σ2
j

)
=

1

max
{
σ2
j ,1−L

} , b̂L =
∑

σ2
j<1−L

1−σ2
j −L

1−L
µX,jvj. (3.18)

By [3, lemma 3.3], this filter scheme with bias defines a convergent regularization method for
L→ 1 in case of vanishing noise and a suitable parameter choice L(δ).

The previous results show that approximation training of a diagonal architecture always
leads to an affine linear φθ, independent of prior and noise distribution (pX, pH). Hence, an
affine linear residual layer is the best architecture choice for this task. This implies that φ−1

θ is
a reconstruction schemewithminimal data dependency since only themeanµX of the prior dis-
tribution has an influence. Furthermore, φ−1

θ is equivalent to a classical regularization scheme,
where one predefines the amount of regularization by choosing the parameter L depending on
the noise level.

10
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For the general approximation training problem

min
f∈C(Rn,Rn), Lip( f)⩽L

Ex∼pX

(
‖(Id− f)(x) −Ax‖2

)
(3.19)

the previous investigations suggest that the solution depends on the second moments of the
prior distribution pX at most. A detailed consideration of the general setting for the approxim-
ation training is beyond the scope of the present work.

4. Reconstruction training

The results in the last section show that the approximation training of iResNets is capable to
provide a convergent regularization but it turns out that it is insufficient for learning a noise-
and more data-dependent regularization. To address this, we instead consider the training

min
θ∈Θ

1
N

N∑

i=1

∥∥∥φ−1
θ

(
Ax(i) + η(i)

)
− x(i)

∥∥∥
2

s.t. Lip( fθ) ⩽ L (4.1)

for given training data {x(i)}i ⊂ X, noise realizations {η(i)}i ∈ X and φθ = Id− fθ. This is also
motivated by sufficient conditions for the convergence analysis in [3, remark 4.1]. We refer to
this training scheme as the reconstruction training. One can also interpret this reconstruction
training as a supervised training on data pairs (x(i),zδ,(i)) for φ−1

θ (zδ,(i)) ≈ x(i) with zδ,(i) =
Ax(i) + η(i).

Using lemma 2.1, we know that

min
θ∈Θ

1
N

N∑

i=1

∥∥∥ψθ
(
Ax(i) + η(i)

)
− x(i)

∥∥∥
2

s.t.
(
1−L2

)
‖ψθ (z1) −ψθ (z2)‖2 + ‖z1 − z2‖2 ⩽ 2〈ψθ (z1) −ψθ (z2) ,z1 − z2〉 ∀z1,z2 ∈ X

(4.2)

is an equivalent problem, assuming that the architectures of φθ and ψθ can approximate any
continuous function.

Similar to the approximation training, we analyze the case of an unlimited amount of train-
ing data with x∼ pX and η ∼ pH fulfilling assumption 2.1. Thus, we obtain the minimization
problem

min
ψ∈Ψ

ˆ
X

ˆ
X
pX (x) pH (η) ‖ψ (Ax+ η) − x‖2 dηdx, (4.3)

where the set of functions Ψ represents the choice of the architecture and the constraints on
the parameters. In this context, we also make use of the density function of zδ = Ax+ η, which
is given by

pZ
(
zδ
)

=

ˆ
X
pX (x)pH

(
zδ −Ax

)
dx. (4.4)

11
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With this, we can define the space of pZ-weighted L2-functions as

L2pZ (X,X) = {ψ : X→ X |‖ψ‖pZ,2 <∞} , (4.5)

‖ψ‖2pZ,2 =

ˆ
X
pZ (z)‖ψ (z)‖2X dz, (4.6)

which is a Hilbert space. Note that functions from L2pZ(X,X) are (only) well-defined on
supp(pZ) ⊂ X, which is sufficient for our purposes.

At first, we consider the unconstrained case ofΨ = L2pZ(X,X). In this setting, the conditional

mean3 ψ̂(zδ) = E(x|zδ) is the solution of (4.3) which is in line with the established theory in
statistical inverse problems (see, e.g. conditional mean estimator in the discussion of Bayes
cost estimators in [12] or [1, proposition 2]).

Lemma 4.1. Let assumption 2.1 hold and Ψ = L2pZ(X,X). Then,

ψ̂ =
(
zδ 7→ E

(
x|zδ
))

=

(
zδ 7→

ˆ
X
p
(
x|zδ
)
xdx

)
(4.7)

is the solution of (4.3), which is unique w.r.t. the L2pZ-norm.

Proof. The minimization problem (4.3) can be solved via the first-order optimality condition.
A detailed proof can be found in appendix A.2.

Next, we consider the constrained reconstruction training, where we encode an arbitrary
constraint, e.g. (4.2), by choosing Ψ to be a suitable subset of L2pZ(X,X).

Lemma 4.2. Let assumption 2.1 hold, Ψ be an arbitrary subset of L2pZ(X,X) and let ψ̂ : X→
X, zδ 7→ E(x|zδ) be the conditional mean estimator. Then, the minimization problem (4.3) is
equivalent to

min
ψ∈Ψ

ˆ
X
pZ
(
zδ
)

‖ψ
(
zδ
)
− ψ̂

(
zδ
)
‖2 dzδ. (4.8)

Note that the existence of an actual minimizer is only guaranteed for closed Ψ.

Proof. The minimization problem (4.3) is equivalent to

min
ψ∈Ψ

ˆ
X

ˆ
X
pX (x) pH

(
zδ −Ax

)(
‖ψ
(
zδ
)
− x‖2 −‖ψ̂

(
zδ
)
− x‖2

)
dzδ dx. (4.9)

In the proof of lemma 4.1, we have already established that the integrals are finite. To split the
integral term into two parts, we use

‖ψ
(
zδ
)
− x‖2 −‖ψ̂

(
zδ
)
− x‖2 = ‖ψ

(
zδ
)
‖2 −‖ψ̂

(
zδ
)
‖2 −〈2x,ψ

(
zδ
)
− ψ̂

(
zδ
)
〉. (4.10)

Fubini’s theorem and the definition of pZ (4.4) implies
ˆ
X

ˆ
X
pX (x) pH

(
zδ −Ax

)(
‖ψ
(
zδ
)
‖2 −‖ψ̂

(
zδ
)
‖2
)
dzδ dx

=

ˆ
X
pZ
(
zδ
)(

‖ψ
(
zδ
)
‖2 −‖ψ̂

(
zδ
)
‖2
)
dzδ. (4.11)

3 expected value corresponding to p(x|zδ) = pH(z
δ−Ax)pX(x)

pZ(zδ)
.
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Again using Fubini’s theorem and the definition of ψ̂(zδ) = E(x|zδ) (see proof of lemma 4.1),
we obtain

ˆ
X

ˆ
X
pX (x) pH

(
zδ −Ax

)
〈2x,ψ

(
zδ
)
− ψ̂

(
zδ
)
〉dzδ dx

=

ˆ
X

〈ˆ
X
pX (x) pH

(
zδ −Ax

)
2xdx, ψ

(
zδ
)
− ψ̂

(
zδ
)〉

dzδ

=

ˆ
X
pZ
(
zδ
)
〈
2
ˆ
X

pX (x) pH
(
zδ −Ax

)

pZ (zδ)
xdx, ψ

(
zδ
)
− ψ̂

(
zδ
)
〉

dzδ

=

ˆ
X
pZ
(
zδ
)〈

2ψ̂
(
zδ
)
, ψ
(
zδ
)
− ψ̂

(
zδ
)〉

dzδ. (4.12)

Thus, (4.9) is equivalent to

min
ψ∈Ψ

ˆ
X
pZ
(
zδ
)(

‖ψ
(
zδ
)
‖2 −‖ψ̂

(
zδ
)
‖2 −

〈
2ψ̂
(
zδ
)
, ψ
(
zδ
)
− ψ̂

(
zδ
)〉)

dzδ. (4.13)

Now, the assertion follows from ‖ψ(zδ)‖2 −‖ψ̂(zδ)‖2 −〈2ψ̂(zδ), ψ(zδ) − ψ̂(zδ)〉
= ‖ψ(zδ) − ψ̂(zδ)‖2.

Thus, in the constraint case, the function ψ∗, obtained by reconstruction training, aims to
approximate the conditional mean estimator for the pZ-weighted L2-norm. In other words,
reconstruction training with a constraint corresponds to a projection of the conditional mean
estimator onto the constraint set with respect to the pZ-weighted L2-norm.

Remark 4.1. Since we know from remark 2.3 that the inverse networkψ can be interpreted as a
scaled iResNet, we can further compare theminimization problem to the case of approximation
training. In the notation of an iResNet, the problem formulated in (4.8) is equivalent to

min
g∈C(Rn,Rn), Lip(g)⩽L

ˆ
X
pZ
(
zδ
)
‖(Id− g)

(
zδ
)
−
(
1−L2

)
E
(
x|zδ
)
‖2 dzδ. (4.14)

Thus, the reconstruction training is equivalent to training an iResNet with residual function g
(Lip(g) ⩽ L) to fit a scaled version of the posterior expectation estimator. In contrast, approx-
imation training aims to fit the same architecture type to the linear operator A. Overall, this
indicates that theoretical and numerical properties (such as data-dependence) for the two
strategies are the sole consequences of the training approach, and there is no additional bias
due to the architecture choice of an iResNet as the forward mapping when assuming sufficient
approximation capability.

So far, the distribution of the noise pH was fixed. Now, we want to consider a variable noise
level δ > 0 by introducing the pdf pH,δ : X→ R⩾0. We do not specify the exact relation of
pH,δ on δ but make the rather informal assumption that ηδ ∼ pH,δ implies ‖ηδ‖ ∼ δ with high
probability. So, δ→ 0 corresponds to the case of vanishing noise. Analogously, let pZ,δ be
defined according to (4.4) s.t. zδ ∼ pZ,δ holds for zδ = Ax+ ηδ . The posterior mean now also
depends on δ and may therefore be defined as

ψ̂δ (z) =

ˆ
X

pH,δ (z−Ax) pX (x)
pZ,δ (z)

xdx. (4.15)

Further, we want to specify the setΨ ⊂ L2pZ(X,X), which represents the inverses of possible
iResNet architectures depending on δ and L. To encode the side constraint of (4.2), we define
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Ψδ
L =

{
ψ ∈ L2pZ,δ (X,X) ∩C(supp(pZ,δ) ,X) | (4.17) holds ∀z1,z2 ∈ supp(pZ,δ)

}
, (4.16)

(
1−L2

)
‖ψ (z1) −ψ (z2)‖2 + ‖z1 − z2‖2 ⩽ 2〈z1 − z2,ψ (z1) −ψ (z2)〉. (4.17)

The set Ψδ
L is closed and convex in L

2
pZ,δ(X,X) for any L< 1 and δ > 0. Consequently, the min-

imization problem in lemma 4.2 is well-defined and admits a unique solution. This solution,
w.r.t. Ψδ

L, pZ,δ and ψ̂δ , is denoted by ψ
∗
L,δ .

The parameter L controls the stability of the elements from Ψδ
L and can therefore be inter-

preted as a regularization parameter. The question remains whether we can also obtain a con-
vergence result, i.e. ψ∗

L,δ(Ax
† + ηδ) → x† for ‖ηδ‖ ⩽ δ, δ→ 0 (vanishing noise) and L→ 1,

analogous to the convergence theorems of classical methods like Tikhonov’s. In the following
remark, we discuss difficulties and supporting facts regarding a convergence result.

Remark 4.2. There are different results in the literature for the posterior distribution to con-
verge to one single point x† (or its respective delta distribution) [7, theorems 1 and 2], [26].
Thus, it might be realistic to expect that the conditional mean estimator ψ̂δ(Ax†) also converges
to x†. In classical convergence theorems [10], the ground truth x† is mostly assumed to be a
minimum-norm-solution of (2.1). However, in a Bayesian setting with a learned reconstruction
scheme, a criterion based on pX for characterizing x† is more appropriate, e.g.

x† = argmax
Ax=z

pX (x) for z ∈ R(A) (4.18)

as in [7] or the one provided in the subsequent lemma 4.3.
Since ψ∗

L,δ is the projection of ψ̂δ onto the set Ψδ
L (lemma 4.2), it is not unlikely that

ψ∗
L,δ(Ax

†) also converges to x†. However, the projection is w.r.t. the L2pz,δ -norm, and we are

actually interested in pointwise convergence. Besides, all functions ψ from the sets Ψδ
L are

Lipschitz continuous and they fulfill the monotonicity condition

‖z1 − z2‖2 ⩽ 2〈z1 − z2,ψ (z1) −ψ (z2)〉. (4.19)

Thus, one cannot approximate arbitrary L2pz,δ -functions.

There are two facts that partly address this difficulty. First, the posterior mean ψ̂δ is also a
Lipschitz continuous function under certain assumptions [9, theorem 4.5, remark 4.6]. Second,
a generalized inverse onR(A) of the form A† : z 7→ x† would indeed fulfill (4.19). This follows
from A being self-adjoint and positive semidefinite (we can write A= Ã∗Ã) and ‖A‖ = 1 by

‖z1 − z2‖2 = ‖Ax†1 −Ax†2‖2 ⩽ ‖Ã∗‖2‖Ã(x1 − x2)‖2 =
〈
Ã
(
x†1 − x†2

)
, Ã
(
x†1 − x†2

)〉

⩽
〈
A
(
x†1 − x†2

)
,x†1 − x†2

〉
= 〈z1 − z2,A

†z1 −A†z2〉. (4.20)

Assuming that ψ∗
L,δ converges pointwise to A† on R(A) would be sufficient to obtain a

convergence result for noisy data as well. If ‖zδ − z‖ ⩽ δ holds and one chooses L in a way
that L→ 1 and δ

1−L → 0 for δ→ 0, the desired convergence

‖ψ∗
L,δ

(
zδ
)
−A† (z)‖ ⩽ ‖ψ∗

L,δ

(
zδ
)
−ψ∗

L,δ (z)‖ + ‖ψ∗
L,δ (z) −A† (z)‖

⩽ 1
1−L

‖zδ − z‖ + ‖ψ∗
L,δ (z) −A† (z)‖ → 0

(4.21)

would follow, since Lip(ψ∗
L,δ) ⩽ 1

1−L [3, lemma 2.1].
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In the following, we provide a result for a potential candidate for x† for the convergence
analysis.

Lemma 4.3. Let assumption 2.1 hold with pH,δ = pH indicating the dependence on δ. In addi-
tion, let ψ̂δ : X→ X, zδ 7→ E(x|zδ) be the conditional mean estimator with

p
(
x|zδ
)

=
pH,δ

(
zδ −Ax

)
pX (x)

pZ,δ (zδ)
(4.22)

and pZ,δ(zδ) =
´
X pX(x)pH,δ(z

δ −Ax)dx. We further make the following assumptions:

(i) Noise onR(A)⊥ = N (A) andR(A) = N (A)⊥ (as A= A∗ and X is finite-dimensional) is
stochastically independent, i.e. there exist pdfs p†H,δ : N (A)⊥ → R⩾0 and p0H,δ : N (A) →
R⩾0 such that pH,δ(η) = p0H,δ(PN (A)η) · p†H,δ(PN (A)⊥η),

(ii) p0H,δ and p
†
H,δ define Dirac sequences with respect to δ→ 0,

(iii) pX is compactly supported and continuous. We define RpX(A) := {Ax |x ∈ supp(pX)} ⊂
R(A),

(iv) For any z ∈ RpX there exists a δ̄ such that for all δ ∈ (0, δ̄] it holds z ∈ supp(pZ,δ).

We then have pointwise convergence of ψ̂δ for z ∈ RpX(A) such that it holds

ψ̂δ (z) −→
δ→0

A†z+
ˆ
N (A)

p
(
x0|A†z

)
x0 dx0

with p
(
x0|A†z

)
=

pX
(
x0 +A†z

)
´
N (A) pX (x ′0 +A†z) dx ′0

(4.23)

i.e. it converges to the minimum-norm solution A†z plus the conditional expectation
E(x0|A†z) ∈ N (A) in the nullspace.

Proof. The proof can be found in appendix A.3.

4.1. Reconstruction training for diagonal architecture

In order to derive more specific results for the minimizer of (4.3), we make the assumption of
stochastic independence of the components xj = 〈x,vj〉 ∼ pX,j and ηj = 〈η,vj〉 ∼ pH,j similar to
the setting in the last section on the approximation training:

Assumption 4.1. Let pX(x) =
∏

j pX,j(xj) and pH(η) =
∏

j pH,j(ηj).

Observe that the first and second moments of pX,j and pH,j exist due to assumption 2.1 with

µX,j =

ˆ
R
pX,j (xj) xj dxj and µH,j =

ˆ
R
pH,j (ηj) ηj dηj = 0 (4.24)

for all j ∈ N. In addition, the density of zj = σ2
j xj + ηj is given by

pZ,j (zj) =

ˆ
R
pX,j (xj) pH,j

(
zj −σ2

j xj
)
dxj (4.25)

with

µZ,j =

ˆ
R
pZ,j (zj) zj dzj =

ˆ
R

ˆ
R
zj pX,j (xj) pH,j

(
zj −σ2

j xj
)
dxj dzj = σ2

j µX,j. (4.26)
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Analogously to the approximation training, in this setting, it is sufficient to consider a diagonal
structure of φ, which then implies the same structure for ψ, i.e.

ψ (z) =
∑

j

ψj (〈z,vj〉)vj (4.27)

and the resulting optimization problem to train each ψj now reads

min
ψj∈Ψj

ˆ
R

ˆ
R
pX,j (xj) pH,j (ηj) ‖ψj

(
σ2
j xj + ηj

)
− xj‖2 dηj dxj (4.28)

with a suitable set of functions Ψj. Recall that ψj : R → R represents the inverse of an iResNet
if ψj satisfies

1
1+L

⩽ ψj (z1) −ψj (z2)
z1 − z2

⩽ 1
1−L

∀z1,z2 ∈ R (4.29)

for some 0 ⩽ L< 1, cf remark 2.2. Therefore, we consider the set

Ψj =

{
ψj : R → R

∣∣∣ψj
(
zj
)

=mzj + b for zj ∈ R with m ∈ R, 1
1+L

⩽m⩽ 1
1−L

,b ∈ R
}

(4.30)

for some 0 ⩽ L< 1. The following lemma provides a formula for the minimizer of prob-
lem (4.28). For better readability, we leave out the index j in the subsequent derivations.

Lemma 4.4. The unique solution to the minimization problem (4.28) with Ψj as in (4.30) is
given by

ψ∗ (z) = mz+
(
1−σ2m

)
µX for z ∈ R (4.31)

with

m=





1
1+L if

σ2VarpX (x)
σ4VarpX (x)+VarpH (η) <

1
1+L ,

σ2VarpX (x)
σ4VarpX (x)+VarpH (η) if 1

1+L ⩽ σ2VarpX (x)
σ4VarpX (x)+VarpH (η) ⩽ 1

1−L ,

1
1−L if

σ2VarpX (x)
σ4VarpX (x)+VarpH (η) >

1
1−L .

(4.32)

Proof. The minimization problem (4.28) can be solved using the necessary KKT conditions.
A detailed proof can be found in appendix A.4.

Note that the inverse of the function ψ∗ : R → R is given by φ∗(x) = x− f∗(x) with

f∗ (x) =





−Lx+
(
1+L−σ2

)
µX if

σ2VarpX (x)
σ4VarpX (x)+VarpH (η) <

1
1+L ,(

1− σ4VarpX (x)+VarpH (η)

σ2VarpX (x)

)
x+

VarpH (η)

σ2VarpX (x)
µX if 1

1+L ⩽ σ2VarpX (x)
σ4VarpX (x)+VarpH (η) ⩽ 1

1−L ,

Lx+
(
1−L−σ2

)
µX if

σ2VarpX (x)
σ4VarpX (x)+VarpH (η) >

1
1−L

(4.33)

for x ∈ R. In the case of noiseless data, i.e. VarpH(η) = 0, f∗ corresponds to the function f∗

derived in lemma 3.1 and theorem 3.1.
The functionψ∗ plays an important role in the case of Gaussian prior and noise distributions,

which we will deal with in the following corollary.
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Corollary 4.1. Assume that pX : R → R and pH : R → R are Gaussian probability density
functions. Then, the function ψ∗ of lemma 4.4 is a solution to the minimization problem (4.28)
with

Ψ =

{
ψ ∈ C1 (R) ∩L2pZ (R)

∣∣∣∣
1

1+L
⩽ ψ ′ (z) ⩽ 1

1−L
for all z ∈ R

}
. (4.34)

Proof. In lemma 4.1 we have seen that the unconstrained solution of problem (4.28) is given
by ψ̂(z) = E(x|z) for all z ∈ R. In the case of Gaussian noise and prior distributions, E(x|z)
can be expressed as

E(x|z) =
σ2VarpX (x)

σ4VarpX (x)+VarpH (η)
z+

(
1− σ4VarpX (x)

σ4VarpX (x)+VarpH (η)

)
µX (4.35)

for all z ∈ R [25, theorem 6.20 and equation (2.16a)], which is an element of C1(R) ∩L2pZ(R).
In combination with lemma (4.2), minimization problem (4.3) can be rewritten as

min
ψ∈Ψ

ˆ
R
pZ (z)

(
ψ (z) − σ2VarpX (x)

σ4VarpX (x)+VarpH (η)
z−
(
1− σ4VarpX (x)

σ4VarpX (x)+VarpH (η)

)
µX

)2

dz.

(4.36)

The same reasoning as in the proof of theorem 3.1 now shows thatψ∗ of lemma 4.4 is a solution
to the minimization problem.

Figure 2 illustrates the behavior of the unconstrained solution ψ̂ and the constrained solu-
tion ψ∗ in case of Gaussian probability density functions for varying noise and small singular
values (1−σ2 > L). Note that both solutions can be rewritten to depend on µZ instead of on µX
using µZ = σ2µX. It can be observed that the noise level affects the slope of the unconstrained
solution, with decreasing values at higher noise levels. Thus, ψ̂ violates the invertibility con-
dition (4.29) for very small and very large values of VarpH(η) leading to ψ

∗ 6= ψ̂ in these cases
(left and right image of figure 2).

4.1.1. General behavior of ψ∗. The previous results deal with special cases where either the
architecture or the probability density functions are known. In order to derive more general
results, we make use of the theory of optimal control. For this, we need to restrict ourselves to
piecewise continuously differentiable functions ψ with bounded domain, i.e. we consider the
set

Ψ =

{
ψ ∈ C0 ([z0,z1])

∣∣∣∣ψ piecewise continuously differentiable with
1

1+L
⩽ ψ ′ (z) ⩽ 1

1−L

}

(4.37)

with fixed z0,z1 ∈ R and Pr(z⩽ z0)4 ⩽ ε, Pr(z⩾ z1) ⩽ ε for some small ε> 0 to stay close
to the previous setting. Furthermore, to apply the optimal control theory, we need to split the
optimization problem into two successive minimization problems. First, we minimize over all

4 Pr denotes the probability w.r.t. z∼ pZ.
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Figure 2. Illustration of the constrained solutionψ∗ and the unconstrained solution ψ̂ in
the case of Gaussian probability density functions pX and pH, cf corollary 4.1. The slope

of the unconstrained solution ψ̂ is denoted by m, i.e. m=
σ2VarpX (x)

σ4VarpX (x)+VarpH (η)
. The plots

exemplify the behavior of ψ∗ and ψ̂ for small singular values (1−σ2 > L) assuming a
fixed prior distribution pX but increasing variance of pH. In the case that VarpH(η) = 0
(left), the slope of the unconstrained solution exceeds 1

1−L . If the noise increases, the

slope of the unconstrained solution decreases, resulting inm ∈ [ 1
1+L ,

1
1−L ] (middle). For

very noisy data, the slope of the unconstrained solution is smaller than 1
1+L (right), again

resulting in ψ∗ 6= ψ̂. Observe that ψ∗ and ψ̂ are equal to 1
σ2 µZ = µX for z= µZ = σ2µX

in all cases.

functions ψ ∈ Ψ with fixed starting point ψ(z0) = ψ0 ∈ R. Then, the starting point minimiz-
ing the objective function is determined. In combination with lemma 4.2, the minimization
problem thus reads

min
ψ0∈R

(
min

ψ∈Ψ∩{ψ |ψ(z0)=ψ0}

1
2

ˆ z1

z0

pZ (z) |ψ (z) − ψ̂ (z) |2 dz
)
. (4.38)

We would like to stress that the minimization problem defined in lemma 4.2 is not equivalent
to the initial one of equation (4.3) due to the bounded domain of ψ. However, this error is
negligible for small ε and the two minimization problems coincide if supp(pZ) ⊂ [z0,z1].

Remark 4.3. The restriction to a bounded domain of ψ might seem artificial at first.
Nevertheless, in applications, the dataset rarely contains samples belonging to low-density
regions of pZ, and thus, these cases are covered in our setting.

The inner minimization problem can be solved with the help of Pontryagin’s maximum
principle, resulting in the following necessary and sufficient conditions for the derivative of ψ.

Lemma 4.5. Let ψ0 ∈ Ψ ∩{ψ |ψ(z0) = ψ0} be a solution of the minimization problem

min
ψ∈Ψ∩{ψ |ψ(z0)=ψ0}

1
2

ˆ z1

z0

pZ (z) |ψ (z) − ψ̂ (z) |2 dz. (4.39)

Then, in all points of differentiability, the derivativeψ ′
0 must satisfy the necessary and sufficient

conditions

ψ ′
0 (z) =





1
1+L if λ(z)> 0

f0 (z) if λ(z) = 0
1

1−L if λ(z)< 0

with z ∈ [z0,z1] (4.40)
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for some f0 : [z0,z1] → R satisfying

1
1+L

⩽ f0 (z) ⩽ 1
1−L

∀z ∈ [z0,z1] (4.41)

and λ : [z0,z1] → R with

λ ′ (z) = −pZ (z)
(
ψ0 (z) − ψ̂ (z)

)
and λ(z1) = 0. (4.42)

Proof. Let us denote the set of all points z ∈ [z0,z1] where ψ0 is differentiable by D. For prob-
lem (4.39), Pontryagin’s maximum principle, see [18, ∗9.6 theorem 1] and [23, theorem 1],
provides the necessary conditions

ψ ′
0 (z) = u0 (z) for all z ∈D and some piecewise continuous function u0 : [z0,z1] → R (4.43)

1
1+L

⩽ u0 (z) ⩽ 1
1−L

∀z ∈ [z0,z1] (4.44)

λ ′ (z) = −pZ (z)
(
ψ0 (z) − ψ̂ (z)

)
with λ(z1) = 0 (4.45)

H(ψ0,u0,λ,z) ⩽ H(ψ0,u,λ,z) ∀u satisfying (4.44) (4.46)

with the Hamiltonian function

H(ψ,u,λ,z) = λ(z) u(z)+
1
2
pZ (z) |ψ (z) − ψ̂ (z) |2. (4.47)

Condition (4.46) is equivalent to setting

u0 (z) =





1
1+L if λ(z)> 0

f0 (z) if λ(z) = 0
1

1−L if λ(z)< 0

for some function f0 satisfying (4.41) . (4.48)

Furthermore, For a function ψ0 satisfying the conditions of Pontryagin’s maximum principle
to be a solution of problem (4.39), the Hamiltonian needs to be jointly convex in ψ and u and
the constrained set defined by equation (4.44) needs to be convex, see [23, theorem 2]. Both
of these conditions are satisfied in our setting, and thus, the proof is complete.

We would like to remark that λ can be expressed as

λ(z) =

ˆ z1

z
pZ (z̃)

(
ψ0 (z̃) − ψ̂ (z̃)

)
dz̃. (4.49)

whenever pZ and ψ̂ are continuous. To illustrate the previous lemma, let us look at a very simple
example. Assume that ψ̂ ′(z)> 1/1−L for all z ∈ [z0,z1]. Then, lemma 4.5 in combination
with a minimization over the starting points ψ0 shows that a solution to problem (4.38) is
given by

ψ∗ (z) =
1

1−L
z+

´ z1
z0
pZ (z̃) ψ̂ (z̃) dz̃− 1

1−L

´ z1
z0
pZ (z̃) z̃dz̃´ z1

z0
pZ (z̃) dz̃

for z ∈ [z0,z1] . (4.50)

In addition, the general behavior of the solution to problem (4.38) is illustrated in figure 3.
This exemplifies that the best possible architecture choice, when considering the reconstruction
training loss, is not necessarily an affine linear one, unlike in the approximation training studied
in the last section. This is partly because of the influence of the noise distribution pH, which
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Figure 3. Behavior of the solutionψ∗ of (4.38) in the case that pz can be represented as a
Gaussian mixture, cf remark 5.1. Observe that the slope of the unconstrained solution ψ̂
exceeds 1/1− L in the interval [−k,k] resulting in λ(z)< 0 for z ∈ [−k− ε,k+ ε] with
ε> 0. As a result, ψ∗ is equal to z 7→ 1/1− Lz for z ∈ [−k− ε,k+ ε] and to ψ̂ outside
this interval.

cancels out when using the approximation training loss. Moreover, the variance of the prior
and noise distribution influences the best architecture and parameter choice, which is not the
case in the approximation training setting, where only the expectation of the prior distribution
influences the solution.

5. Numerical experiments

To study the implications of the previously developed theory for the practical application of
iResNets for solving inverse problems, we perform experiments on two forward operators,
where we compare approximation training (3.1) to reconstruction training (4.1). In all experi-
ments, we train single-layer iResNets with diagonal (3.5) structurewhere the residual functions
f θ comprise multiple layers.

In the setting presented in the following sections, we consider a discrete convolution with a
smoothing kernel a ∈ R9×9 that is depicted in figure 4 and zero padding to preserve dimension-
ality. Since the resulting Toeplitz matrixMa that performs the convolution with a is symmetric
and positive definite, this serves immediately as a self-adjoint operator A=Ma. The second
inverse problem we aim to solve is given by a discrete Radon operator Ã : R28×28 → R30×41,
such that A= Ã∗Ã, which is in line with the setting used in the prior work [3]. We restrict the
discussion of the numerical results to the convolution operator, and for the sake of complete-
ness, the results for the Radon operator are provided in appendix D in figures 12–16 and table
2.

In both cases, we train our models on the MNIST handwritten digits dataset [17], where
we treat images as flattened vectors in R28·28. In addition, we study an artificially generated
bimodal Gaussian dataset for which we sample the prior distribution in every singular vector
independently from a (bimodal) Gaussian mixture distribution. The pdf in every j therefore
reads
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Figure 4. The filter kernel a used in the convolution operator Ma.

pX,j (xj) = ρ1 gv,t1 (xj)+ ρ2 gv,t2 (xj) (5.1)

where ρ1 = 0.35, ρ2 = 0.65, v= 0.15, t1 = −0.6, t2 = 0.6 and gs,t is the pdf of a Gaussian with
standard deviation s and expected value t. This bimodal structure enables us to further explore
the data dependency of the optimized models.

The architecture of the subnetworks included in the diagonal architecture and their training
is realized identical to [3]: Each subnetwork consists of a three-layer fully connected network,
equipped with 35 hidden neurons in each of the first two layers and one output neuron. In addi-
tion, we apply the ReLU activation function to the first and second layers of each subnetwork.
Figure 7 of [3] depicts the architecture. The network weights are optimized using Adam [13]
with a learning rate of 0.001, reduced by the factor 0.96 after every epoch. Extending the
approach in [20], we parameterize the network weights in the k-th linear layer of all sub-
networks to fulfill the Lipschitz constraint L(k). We do so by choosing the weights Wj,k as

Wj,k = min(1,L
(k)
/Lip(W̃j,k))W̃j,k, where W̃j,k are unconstrained matrices. We choose the indi-

vidual layer Lipschitz constants as L(1) = L(2) = 1, L(3) = L.
Reconstruction training is accomplished by computing the inverse of the iResNets through

the usual fixed point iteration and backpropagating through the unrolled iteration to optimize
the network weights. To ensure sufficient accuracy of the inverse, especially for the models
with a high Lipschitz bound, we need to make a suitable choice for the number of fixed point
iterations. For this purpose, we utilize the models that were trained via approximation training.
This is motivated by our observation that each of these models reaches its Lipschitz bound and
is therefore as unstable as permitted within the constraint. For each L, we select a number of
fixed point iterations that results in approximately 2% error of φ−1

θ(L) evaluated on the test
dataset. As a result, one has to run the iterative inversion in every training step, resulting in a
much greater computational effort for the reconstruction training than approximation training.
The Lipschitz bound, realized by a proper parameterization of the fθ, has to be computed only
once per iteration.

Of course, a numerically more efficient training approach would be to extend on remark 2.3
and construct ψ, the inverse of an iResNet, as a scaled iResNet that is trained on reversed data
points but similar to the approximation approach. However, we currently do not have guaran-
tees on the approximation capability of the involved (fully-connected) iResNets architectures
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and their inverses. To provide a fair comparison, we aim to enforce the same inductive bias in
both training methods by choosing the same forward mapping architecture. The source code
corresponding to the experiments in this section is openly available [27].

In the described settings, we perform experiments for varying noise levels δℓ and Lipschitz
constants Lm, where we choose

δ̂ℓ =

{(
1
3

)7−ℓ
for 0< ℓ < 7

0 for ℓ= 0.
ℓ= 0, . . . ,6 (5.2)

Lm = 1−
(
1
3

)m

, m= 1, . . . ,5 (5.3)

and the resulting noise η is Gaussian noise with standard deviation δℓ = δ̂ℓ · stddataset,
where stddataset denotes the averaged standard deviation of the coefficients stdj :=
std(〈x(i),vj〉i=1,...,N) of the current dataset (i.e. standard deviation with respect to i, mean with
respect to j). The corresponding numbers of fixed point iterations for the chosen error bound
are i1,2 = 30, i3 = 100, i4 = 300 and i5 = 800. In the following, we discuss the results in terms
of the learned solutions, the resulting data-dependent filter functions, and the regularization
and approximation properties of the models.

5.1. Learned inverse mappings

To compare the characteristics of the approximation and reconstruction training to our the-
oretical findings, we plot the learned one-dimensional inverse mappings ψj in the different
components j (corresponding to the singular values σj) for the bimodal dataset. We visualize
the results in figure 5 for a large and a small eigenvalue of A.

In the case of approximation training, we observe the predicted affine linear behavior in the
support of the data distribution, limited by the Lipschitz constraints and aligned to the expected
value of the training data. This result is independent of the noise and optimal only for small
noise levels. At the boundaries of the data distribution seen during training, the proper behavior
of the optimal solution from theorem 3.1 is not learned properly.

For the case of reconstruction training, we can again corroborate our theoretical findings
numerically. For this purpose, we compute the posterior expectation E(xj|zδj ) for our setting.
Remark 5.1. For the multimodal Gaussian distribution with pdf pX and Gaussian noise pH,

pH (z) = gw,0 (z) (5.4)

pX (x) =
K∑

k=1

ρk gvk,tk (x) , (5.5)

we have

pz (z) =
K∑

k=1

ρk guk,tkσ2 (z) (5.6)
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Figure 5. Reconstructions ψ∗
approx(z

δ
j ) trained via approximation training and ψ∗

reco(z
δ
j )

trained via reconstruction training at Lipschitz bound L2 for different singular values
and for noise levels ‘zero’ (δ0, top row), ‘small’ (δ1,middle row) and ‘large’ (δ5, bottom
row) for A=Ma.
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and the posterior expectation ψ̂ reads

E(x|z) =

∑K
k=1

ρk
u2k

(
σ2v2kz+ tkw2

)
guk,tkσ2 (z)

∑K
k=1 ρk guk,tkσ2 (z)

= σ2z

∑K
k=1

v2kρk
u2k
guk,tkσ2 (z)

∑K
k=1 ρk guk,tkσ2 (z)

+w2

∑K
k=1

tkρk
u2k
guk,tkσ2 (z)

∑K
k=1 ρk guk,tkσ2 (z)

, (5.7)

where uk =
√
w2 +(σ2vk)2. We note that this recovers the linear behavior E(x|z) = z/σ2 in

the noise-free case while it adds a correction term in the noisy case that pulls and pushes data
points towards more likely results.

For regions within the support of the data distribution, where the constraint (2.6) permits
the model to approximate E(xj|zδj ), we observe in figure 5 that the learned solutions match
well with the posterior expectation. If the model reaches the limiting constraint, it exhausts
the possible slope to be as close to the posterior expectation as possible. This results in a much
more data-dependent inversion scheme, where reconstructions that were more likely to appear
during training are favored. Consequently, the model can compensate for larger noise levels
based on additional learned knowledge about the data. The behavior of the learned solution
thus coincides with the theoretically founded one in figure 3.

In the case of large noise, the reconstruction-based model regularizes and does not neces-
sarily exhaust the Lipschitz constraint, while the approximation model always tries to fit the
operator as well as possible. If noise is absent, the learned mappings coincide for both training
strategies.

5.2. Learned filter functions

As a link to classical regularization theory, we visualize the data-dependent filter functions
that correspond to the learned models. For this purpose, we evaluate the filter rL, where

(Id− fθ,j)
−1

(s(q)) − b̂L,j = rL
(
σ2
j ,s(q)

)
s(q) for s ∈ R, (5.8)

for each singular value σj at data points s(q) := σ2
j (µX,j + q · stdj), where we subtract the axis

intercept b̂L,j = (Id− fθ,j)−1(0). The variable q ∈ R determines the number of standard devi-
ations stdj away from the mean value µX,j = 1

N

∑N
i=1〈x(i),vj〉 in the image of the dataset with

respect to the fixed singular value of the operator. For simplicity, we define

RL (σj,q) := rL
(
σ2
j ,s(q)

)
s(q) . (5.9)

The results for approximation and reconstruction training are visualized as surface plots for
both datasets in figures 6 and 11. In all cases, the rL show a sensible behavior, damping small
singular values and roughly satisfying rL → 1 as σ2 → 1.

On the bimodal dataset in figure 6, data dependency occurs in all filter functions. In the case
of approximation training, this is visible only in the sense that proper regularizing behavior is
learned exclusively within the support of the data distribution. Reconstruction training shows
a more complex dependency since the posterior mean aims to push points that lie close to
0 towards the two peaks of the bimodal data distribution if noise is present in the data, as
can also be seen in figure 5. As a result, the medium singular values, in which an amplified
slope in the solution is, on the one hand, permitted by the Lipschitz constraint and, on the
other hand, also necessary due to the present influence of noise, are elevated near the center of
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Figure 6. Filter functions RL(σj,q) as defined in (5.9) corresponding to trained net-
works φθ(Lm),δℓ for m= 1,2,3 (columns) and ℓ= 0,1,5 (rows), trained via approxim-
ation training (top) and via reconstruction training (bottom) on the bimodal dataset for
A=Ma.
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the distribution. This results in filter functions that may not lead to convergent regularization
schemes but include data-driven corrections for the observed noise.

On MNIST in figure 11, the stronger data dependence of the reconstruction training is not
directly visible; all filters appear to be approximately constant in the range of 5 standard devi-
ations around the mean. This is likely to be due to the fact that the distributions in the singular
values are all approximately unimodal. Therefore, the correction could be similar to the simple
regularizing behavior of the neural networks in the approximation training approach. In return,
the action of L as a regularization parameter becomes visible. Especially for small L, the filter
functions show similarities to the expected filter function; see remark 3.1. The learned filter
functions in approximation training are very similar for every noise level, which is in line with
the developed theory. In contrast, the filters learned in reconstruction training show stronger
regularization (i.e. more dampening of small singular values) for larger noise levels, adapting
to the data seen during training. This again fits well within the theoretical results developed
in section 4 and is especially visible for large L= L3, where the model is, in principle, able to
fit the operator well. However, the filter functions for the largest noise δ̂5 and L2,L3 look very
similar, indicating that the model learns strong regularization from data at the cost of a worse
operator approximation.

5.3. Reconstruction quality and convergence

To compare the performance of the different models in terms of reconstruction quality, we
show images and filter functions for a single MNIST digit in figure 7.

Especially for large noise, the visual quality clearly benefits from the reconstruction train-
ing compared to the approximation approach. This supports the argument that additional data
dependence may be desirable for large-noise applications. In the same case, the approximation
training shows its regularization properties and indicates proper parameter choice rules: The
image quality improves for smaller Lipschitz constraints, which imply a strong regularization.
This behavior is not visible in the reconstruction approach, where a large L generally seems
to improve the quality. The filter plots we provide for the given sample in figure 7(right) also
underlined this. In this case, they show a similar graph for L2 and L3. The filter plots also reveal
that the models optimized via approximation training are independent of the noise seen during
training and, therefore, learn identical filter functions for all noise levels. Table 1 also reveals
an advantage of this method for small noise levels.

Another way to study the convergence in L and δ of the trained models is to evaluate the
approximation properties in terms of the overall errors on the dataset with respect to different
error measures. To evaluate the localized approximation property that has been introduced
in [3, theorem 3.1], we define

Emean
(
φθ(L),A

)
=

1
N

N∑

i=1

∥∥∥φθ(L)
(
x(i)
)

−Ax(i)
∥∥∥ , (5.10)

Ex(m)
(
φθ(L),A

)
=
∥∥∥φθ(L)

(
x(m)

)
−Ax(m)

∥∥∥ , (5.11)

estimating the approximation error of the trained model for the whole dataset or a single
sample. In figure 8, we plot this error for the models trained without noise and varying L. In
the case of approximation training, we observe slightly superlinear convergence in the data-
set on average, indicating that the property is satisfied for many samples. As proven in prior
work [3], this implies that the training constructs a convergent regularization scheme for these
samples. For reconstruction-based training, this is not fulfilled on average. To preserve some
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Figure 7. Reconstructions of an MNIST sample x= x(1) from the test dataset by
computing φ−1

θ(Lm,δℓ)
(Ax+ η̃) with η̃ ∼N (0, δℓId) for Lipschitz bounds Lm with m=

1,2,3 (columns) and noise levels δℓ = δ̂ℓ · stdMNIST with ℓ= 0,1,3,4 (rows) together
with corresponding filter functions for A=Ma. The top subfigure depicts the recon-
structions from networks trained via approximation training, and the bottom subfigure
corresponds to the networks optimized via reconstruction training.
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Table 1. SSIM and MSE measures corresponding to reconstructions of x(1) in figure 7.
Bold values indicate the best reconstruction quality with respect to the corresponding
error measure for a given noise level.

SSIM MSE

Approximation training L1 L2 L3 L1 L2 L3

δ0 0.7401 0.7984 0.8106 0.0101 0.0058 0.0037
δ1 0.7377 0.7930 0.8219 0.0103 0.0056 0.0036
δ3 0.7261 0.7455 0.6575 0.0105 0.0063 0.0094
δ4 0.6791 0.6236 0.5085 0.0112 0.0132 0.0469

SSIM MSE

Reconstruction training L1 L2 L3 L1 L2 L3

δ0 0.7417 0.8046 0.8255 0.0102 0.0057 0.0040
δ1 0.7403 0.8051 0.8240 0.0103 0.0056 0.0039
δ3 0.7336 0.7774 0.7961 0.0105 0.0061 0.0046
δ4 0.7208 0.7242 0.7096 0.0106 0.0070 0.0066

insights on the convergence of the method, we extend on the weaker but sufficient condition
in [3, remark 3.2] and define

Ẽmean
(
φθ(L),A

)
=

1
N

N∑

i=1

∥∥∥x(i) −φ−1
θ(L)

(
Ax(i)

)∥∥∥ (5.12)

Ẽx(m)
(
φθ(L),A

)
=
∥∥∥x(m) −φ−1

θ(L)

(
Ax(m)

)∥∥∥ , (5.13)

which is closer to the target in reconstruction training. In this case, Ẽx(m)(φθ(L),A)
L→1−−−→ 0

would be sufficient for local convergence. Figure 8 indicates that this property can still be
satisfied, however, with slow convergence rates.

In addition, we evaluate the reconstruction error of the training approaches for varying noise
levels. Figure 9 depicts the results for the mean squared error

MSEδℓreco
(
φθ(L,δℓ),A

)
=

1
N

N∑

i=1

∥∥∥x(i) −φ−1
θ(L,δℓ)

(
Ax(i) + η(i)

)∥∥∥
2

(5.14)

and averaged structural similarity index measure (SSIM) as defined in [28], computed for the
dataset by

SSIMδℓ
(
φθ(L,δℓ),A

)
=

1
N

N∑

i=1

SSIM
(
x(i),φ−1

θ(L,δℓ)

(
Ax(i) + η(i)

))
. (5.15)

Here, one can again see that the approximation training comes with a typical parameter choice
rule known from regularization theory, where one has to choose L→ 1while δ→ 0. In contrast,
the reconstruction training performs best with the largest L among all noise levels since the
regularization emanates from the data. Overall, the reconstruction trainingmethod outperforms
the approximation training for all large δ but stays slightly behind for very small noise.
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Figure 8. Test samples x(1) and x(2) (bottom left). Evaluations of the local approxima-
tion property via Emean(φθ(Lm),A), Ex(1)(φθ(Lm),A) and Ex(2)(φθ(Lm),A) for the approx-
imation training (top left) and the reconstruction training (top right), and evaluations
of the generalized approximation property via Ẽmean(φθ(Lm),A), Ẽx(1)(φθ(Lm),A) and

Ẽx(2)(φθ(Lm),A) for the reconstruction training (bottom right) for Lm = 1− 1/3m with
m= 1, . . . ,5, A=Ma on the MNIST test dataset.

Figure 9. Reconstruction errors MSEδℓ
reco(φθ(L,δℓ),A) (top row) and

SSIMδℓ(φθ(L,δℓ),A) (bottom row) for networks trained on noisy samples with
noise levels δℓ for ℓ= 0, . . . ,6 and reconstructions from noisy samples of the same
noise level for the approximation training (left) and for the reconstruction train-
ing (middle) with Lipschitz bounds Lm on the MNIST dataset for A=Ma. Outcomes of
optimal parameter choices for both training strategies over different noise levels can be
seen on the right-hand side.
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6. Discussion and outlook

The present work can be seen as a continuation of [3]. There, the authors investigated regular-
ization properties of the proposed iResNet reconstruction approach for specific network archi-
tectures trained according to the approximation training on samples to impart data depend-
ency. Here, we have extended the theory by focusing on the question of to what extent the
training data distribution influences the optimal parameters of the iResNet and, in turn, the
resulting reconstruction scheme. To this end, we considered the training of the iResNets from
a Bayesian perspective and focused on two different loss functions, namely the approximation
training and the reconstruction training.

In the approximation training, our results for the diagonal architecture show that for all
possible prior and noise distributions, the best-suited residual function f is an affine linear one
whose optimal parameters depend on the mean of the prior distribution, the eigenvalue σ2

j and
the Lipschitz constant L< 1. Thus, in this setting, the data dependency on the training outcome
is minimal, with no influence from the noise distribution and, especially, the regularization
properties of the resulting reconstruction scheme. Instead, the amount of regularization of φ−1

θ

is solely controlled by the Lipschitz constant L, which also becomes apparent by the observed
equivalence of φ−1

θ to a convergent filter-based regularization scheme with bias.
In contrast, the prior and noise distributions significantly impact the optimal architecture

and parameters when considering the reconstruction training. Here, we realize the network
by an iResNet’s inverse and train it to approximate A−1, resulting in a stable reconstruction
scheme. We showed that we can interpret the optimal network as an approximation of the con-
ditional mean estimator zδ 7→ E(x|zδ) w.r.t. the pZ-weighted L2-norm, where pZ is the dens-
ity function of Ax+ η. Hence, the optimal architecture choice and the corresponding optimal
parameters depend on the prior and the noise distribution. Consequently, this indicates that the
amount of regularization of the trained network is controlled by the Lipschitz constant L and
possibly by the amount of noise in the training data.

The theoretical findings are validated and further corroborated by a series of numerical
investigations on the MNIST dataset and an artificially generated dataset following a bimodal
Gaussian distribution for two different forward operators. In particular, the results highlight
that in reconstruction training, the noise distribution influences the regularization properties
of the network. In the approximation training, the noise does not influence the regularization
properties; they are solely controlled by the Lipschitz constant L. As a result, the reconstruction
training leads to superior regularizations in high noise regimes, whereas the approximation
training is more suitable in low noise regimes due to better convergence properties.

These investigations of the approximation and reconstruction training illustrate how the
loss function determines the influence of the prior and noise distribution on the reconstruc-
tion scheme and shed light on which architectures are suitable. Investigating a link to MAP
estimation and how it could be represented in terms of an iResNet might allow for revealing
further links to regularization theory in future works (see also a more detailed discussion in
appendix B).

The presented results allow further investigations and can serve as a foundation for future
research directions. In the approximation training case, it might be desirable to relax the naive
Bayes assumption and to consider the general non-diagonal network case (3.19). In line with
the found limited data dependency in the diagonal case, we conjecture a dependency on second
moments of the prior distribution pX at most. In the general network case, we showed that
reconstruction training leads to a data-dependent and stable reconstruction scheme that approx-
imates the mean of the posterior distribution, where the degree of stability can be controlled
by the Lipschitz constant L. What is left to prove is a convergence property as discussed in
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remark 4.2, which could, in principle, further manifest the superiority of the reconstruction
training approach and provide additional guarantees. Here, potential generalizations also could
incorporate alternative loss functions in the integrand of the reconstruction training loss, which
might result in approximations of alternative estimators induced by Bayes costs [12]. In this
context, as a starting point, one may limit oneself to linear estimators to further investigate
the relation to learned MAP estimators, respectively Tikhonov regularization, as in [2, 11]. In
order to obtain convergence guarantees as well as data dependence, when desirable, one can
explore a noise-controlled convex combination of both training losses. Theoretical as well as
numerical investigations in this direction remain future research.

In addition, remark 2.3 serves as a basis to improve the numerical implementation of the
reconstruction training by constructing the network as a scaled iResNet, resulting in a more
efficient training approach asmentioned in section 5. This is a reasonable approachwhen one is
not interested in directly comparing the approximation and reconstruction training. Numerical
investigations, including the general non-diagonal network architecture, remain immediate
future research.

Besides these improvements, extending our results to deeper network architectures, e.g. a
concatenation of iResNets, could be beneficial. This would allow for more expressive net-
work architectures and further improve the reconstruction quality of the networks. Finally, it
might be worthwhile to generalize the results to nonlinear inverse problems, allowing for an
application to a larger number of operators.
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Appendix A. Proofs

A.1. Proof of lemma 3.1

Proof. For a function f of the form f(x) = mx+ b with the constraint m2 ⩽ L2, we can
solve (3.7) by using the Lagrangian

K(m,b,λ) =

ˆ
R
pX (x) |

(
1−σ2 −m

)
x− b|2 dx+λ

(
m2 −L2

)
, (A.1)

where the integral is well-defined due to the existence of the first and second moments of
pX. The convexity, coercivity, and continuity of the integral term w.r.t. (m, b) imply that a
minimizer exists. Therefore, we can calculate the minimizer using the necessary conditions
(KKT conditions)
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∂K
∂m

(m,b,λ) = −
ˆ
R
2pX (x)

((
1−σ2 −m

)
x− b

)
xdx+ 2λm

!
= 0, (A.2)

∂K
∂b

(m,b,λ) = −
ˆ
R
2pX (x)

((
1−σ2 −m

)
x− b

)
dx

!
= 0, (A.3)

λ
(
m2 −L2

) !
= 0, (A.4)

λ⩾ 0. (A.5)

Rearranging (A.2) for m and (A.3) for b leads to

m=

´
R 2pX (x)

((
1−σ2

)
x− b

)
xdx´

R 2pX (x)x2 dx+ 2λ
=

(
1−σ2

)
EpX

(
x2
)
− bµX

EpX (x2)+λ
, (A.6)

b=

´
R 2pX (x)

(
1−σ2 −m

)
xdx´

R 2pX (x) dx
=
(
1−σ2 −m

)
µX, (A.7)

where we use the abbreviated notation EpX for Ex∼pX . Now, plugging b= (1−σ2 −m)µX into
the equation for m implies

m=

(
1−σ2

)
EpX

(
x2
)
−
(
1−σ2 −m

)
µ2
X

EpX (x2)+λ

⇔
(
1− µ2

X

EpX (x2)+λ

)
m=

(
1−σ2

)(
EpX

(
x2
)
−µ2

X

)

EpX (x2)+λ

⇔ VarpX (x)+λ

EpX (x2)+λ
m=

(
1−σ2

)
VarpX (x)

EpX (x2)+λ

⇔ m=
(
1−σ2

) VarpX (x)
VarpX (x)+λ

. (A.8)

Since 1−σ2 > L holds by assumption, we need λ> 0 to ensure m⩽ L. Then, (A.4) dir-
ectly implies m=L. As m is uniquely determined we also know that b is unique with
b= (1−σ2 −L)µX.

A.2. Proof of lemma 4.1

Proof. We denote the objective function by F : L2pZ(X,X) → [0,∞),

F(ψ) =

ˆ
X

ˆ
X
pX (x) pH

(
zδ −Ax

)
‖ψ
(
zδ
)
− x‖2 dzδ dx, (A.9)

which coincides with (4.3) with the substitution zδ = Ax+ η. Note that for all ψ ∈ L2pZ(X,X),
it holds F(ψ)<∞ since

‖ψ
(
zδ
)
− x‖2 = ‖ψ

(
zδ
)
‖2 − 2〈ψ

(
zδ
)
,x〉 + ‖x‖2 ⩽ 2‖ψ

(
zδ
)
‖2 + 2‖x‖2 (A.10)

and the integrals

32



Inverse Problems 40 (2024) 045021 C Arndt et al

ˆ
X

ˆ
X
pX (x) pH

(
zδ −Ax

)
‖ψ (z)‖2 dzδ dx=

ˆ
X
pZ
(
zδ
)

‖ψ
(
zδ
)
‖2 = ‖ψ‖2pZ,2,ˆ

X

ˆ
X
pX (x) pH

(
zδ −Ax

)
‖x‖2 dzδ =

ˆ
X
pX (x) ‖x‖2

ˆ
X
pH
(
zδ −Ax

)
dzδ dx

=

ˆ
X
pX (x) ‖x‖2 dx (A.11)

are both finite.
Besides, note that F is convex w.r.t. ψ since ψ 7→ ‖ψ(zδ) − x‖2 is convex for any x,zδ ∈ X.

Thus, we can find the minimizer of F by setting its derivative to zero.
To compute the derivative of F, we consider

F(ψ + h) =

ˆ
X

ˆ
X
pX (x) pH

(
zδ −Ax

)
‖ψ
(
zδ
)
+ h
(
zδ
)
− x‖2 dzδ dx

=

ˆ
X

ˆ
X
pX (x) pH

(
zδ −Ax

)
‖ψ
(
zδ
)
− x‖2 dzδ dx

+ 2
ˆ
X

ˆ
X
pX (x) pH

(
zδ −Ax

)
〈ψ
(
zδ
)
− x,h

(
zδ
)
〉dzδ dx

+

ˆ
X

ˆ
X
pX (x) pH

(
zδ −Ax

)
‖h
(
zδ
)
‖2 dzδ dx. (A.12)

The first of the three summands is F(ψ), the last one equals ‖h‖2pZ,2 and the second summand
equals ∂F(ψ)h. Note that the second summand is finite since F(ψ) and ‖h‖2pZ,2 are both finite.
Using Fubini’s theorem, we obtain

∂F(ψ)h= 2
ˆ
X

ˆ
X
pX (x) pH

(
zδ −Ax

)
〈ψ
(
zδ
)
− x,h

(
zδ
)
〉dzδ dx

= 2
ˆ
X

〈ˆ
X
pX (x) pH

(
zδ −Ax

) (
ψ
(
zδ
)
− x
)
dx, h

(
zδ
)〉

dzδ. (A.13)

We are looking for ψ̂ such that ∂F(ψ̂)h= 0 for any h ∈ L2pZ(X,X). Hence, the fundamental
lemma of the calculus of variations implies

ˆ
X
pX (x) pH

(
zδ −Ax

) (
ψ̂
(
zδ
)
− x
)
dx= 0

⇔ pZ
(
zδ
)
· ψ̂
(
zδ
)

=

ˆ
X
pX (x) pH

(
zδ −Ax

)
xdx

⇔ ψ̂
(
zδ
)

=

´
X pX (x) pH

(
zδ −Ax

)
xdx

pZ (zδ)
(A.14)

for almost all zδ ∈ supp(pZ). According to Bayes’ formula

p
(
x|zδ
)

=
p
(
zδ|x
)
pX (x)

pZ (zδ)
=
pH
(
zδ −Ax

)
pX (x)

pZ (zδ)
, (A.15)

ψ̂(zδ) is the expected value of the posterior density function p(x|zδ).
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Finally, we need to make sure that ψ̂(zδ) = E(x|zδ) is an L2pZ-function. For this, we use
Jensen’s inequality for conditional expectations [14, theorem 8.20, corollary 8.21] and obtain

‖E
(
x|zδ
)
‖2 =

n∑

j=1

|E
(
xj|zδ

)
|2 ⩽

n∑

j=1

E
(
|xj|2

∣∣zδ
)

= E
(
‖x‖2

∣∣zδ
)
. (A.16)

Then, by the definition of conditional expectations, we get

ˆ
X
pZ
(
zδ
)

E
(
‖x‖2

∣∣zδ
)
dzδ = EpZ

(
E
(
‖x‖2

∣∣zδ
))

= E
(
‖x‖2

)
, (A.17)

which is finite, and the proof is complete.

A.3. Proof of lemma 4.3

Proof. Due to (iii), it immediately follows that pX is uniformly continuous. From (iii), we also
deduce that the marginal of pX on N (A)⊥, pX,N (A)⊥ : N (A)⊥ → R⩾0 with

pX,N (A)⊥ (x) =

ˆ
N (A)

pX (x0 + x) dx0 (A.18)

is compactly supported and bounded and thus also uniformly continuous. Analogously, we can
deduce uniform continuity of the mappings g0 : N (A)⊥ → N (A) and g† : N (A)⊥ → N (A)⊥

with

g0 (x) =

ˆ
N (A)

pX (x0 + x)x0 dx0 (A.19)

and

g† (x) =

ˆ
N (A)

pX (x0 + x) dx0 x. (A.20)

Next, by using X= N (A) ⊕N (A)⊥ we now observe that for arbitrary z ∈ X due to (i) it
holds

pZ,δ (z) =

ˆ
X
pH,δ (z−Ax)pX (x) dx

=

ˆ
N (A)⊥

pH,δ (z−Ax1)
ˆ
N (A)

pX (x0 + x1) dx0 dx1

= p0H,δ
(
PN (A)z

)ˆ
R(A)

p†H,δ

(
PN (A)⊥z− y1

)ˆ
N (A)

pX
(
x0 +A†y1

)
dx0 dy1|detA†|,

(A.21)

where the transformation x1 = A†y1, with generalized inverse A† : R(A) → N (A)⊥, is used in
the last equality. Analogously, we further obtain for arbitrary z ∈ supp(pZ,δ) ⊂ X
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ψ̂δ (z) =
1

pZ,δ (z)

ˆ
X
pH,δ (z−Ax)pX (x)x dx

=
1

pZ,δ (z)

ˆ
N (A)⊥

pH,δ (z−Ax1)
ˆ
N (A)

pX (x0 + x1)(x0 + x1) dx0 dx1

=
p0H,δ

(
PN (A)z

)

pZ,δ (z)

ˆ
R(A)

p†H,δ

(
PN (A)⊥z− y1

)

ˆ
N (A)

pX
(
x0 +A†y1

)(
x0 +A†y1

)
dx0 dy1|detA†|. (A.22)

Exploiting the previously derived representation of pZ,δ and (i) yields

ψ̂δ (z) =

´
R(A) p

†
H,δ

(
PN (A)⊥z− y1

)(´
N (A) pX

(
x0 +A†y1

)(
x0 +A†y1

)
dx0
)
dy1

´
R(A) p

†
H,δ

(
PN (A)⊥z− y1

)´
N (A) pX (x0 +A†y1) dx0 dy1

=

´
R(A) p

†
H,δ

(
PN (A)⊥z− y1

)(
g0
(
A†y1

)
+ g†

(
A†y1

))
dy1

´
R(A) p

†
H,δ

(
PN (A)⊥z− y1

)
pX,N (A)⊥ (A†y1) dy1

. (A.23)

We now consider the denominator and nominator separately. In the denominator we first
observe that the mapping pX,N (A)⊥(A†y1) is also uniformly continuous due to the continuity of
A†. Exploiting R(A) = R(A∗) = N (A)⊥, the approximation property [15, sec II] of the Dirac
sequence p†H,δ delivers uniform convergence of the denominator, i.e. this implies pointwise
convergence such that for any z ∈ X it holds
ˆ
R(A)

p†H,δ

(
PN (A)⊥z− y1

)
pX,N (A)⊥

(
A†y1

)
dy1 −→

δ→0
pX,N (A)⊥

(
A†PN (A)⊥z

)
. (A.24)

Analogous arguments apply to the nominator of (A.23) by exploiting the approximation prop-
erty of the Dirac sequence implying uniform convergence and thus pointwise convergence
such that for any z ∈ X, it holds

ˆ
R(A)

p†H,δ

(
PN (A)⊥z− y1

)(
g0
(
A†y1

)
+ g†

(
A†y1

))
dy1

−→
δ→0

g0
(
A†PN (A)⊥z

)
+ g†

(
A†PN (A)⊥z

)
. (A.25)

Due to (iv) for any fixed z ∈ RpX(A) the representation of ψ̂δ in (A.23) is well-defined for
sufficiently small δ. Consequently, we have convergent sequences in the nominator and in the
denominator such that the quotient converges by standard sequence arguments. As RpX(A) ⊂
R(A) = N (A)⊥ we thus obtain the desired pointwise convergence

ψ̂δ (z) −→
δ→0

g†
(
A†z
)
+ g0

(
A†z
)

pX,N (A)⊥ (A†z)
= A†z+

ˆ
N (A)

pX
(
x0 +A†z

)
´
N (A) pX (x ′0 +A†z) dx ′0

x0 dx0. (A.26)
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A.4. Proof of lemma 4.4

Proof. We solve the minimization problem (4.28) by applying the KKT conditions. To this
end, consider the Lagrange functional

K(m,b,λ1,λ2) =

ˆ
R

ˆ
R
pX (x) pH (η)

(
m
(
σ2x+ η

)
+ b− x

)2
dηdx

+λ1

(
m− 1

1−L

)
+λ2

(
1

1+L
−m

)
(A.27)

for m,b,λ1,λ2 ∈ R. Observe that the integral is well-defined as the first and second moments
of pX and pH exist by assumption. Moreover, K is convex and coercive w.r.t. (m, b) and the
integral is continuous w.r.t. (m, b). Consequently, there exists a minimizer of problem (4.28)
which satisfies the necessary KKT conditions

∂K
∂m

(m,b,λ1,λ2) =

ˆ
R

ˆ
R
2pX (x) pH (η)

(
σ2x+ η

) (
m
(
σ2x+ η

)
+ b− x

)
dηdx

+λ1m−λ2m
!
= 0, (A.28)

∂K
∂b

(m,b,λ1,λ2) =

ˆ
R

ˆ
R
2pX (x) pH (η)

(
m
(
σ2x+ η

)
+ b− x

)
dηdx

!
= 0, (A.29)

λ1

(
m− 1

1−L

)
!
= 0, (A.30)

λ2

(
1

1+L
−m

)
!
= 0, (A.31)

λ1,λ2 ⩾ 0. (A.32)

Case λ1 = λ2 = 0: equation (A.28) implies
ˆ
R

ˆ
R
pX (x) pH (η)

(
σ2x+ η

) (
m
(
σ2x+ η

)
+ b− x

)
dηdx

=

ˆ
R

ˆ
R
pX (x) pH (η)

(
mσ4x2 + 2mσ2xη+mη2 + bσ2x+ bη−σ2x2 − ηx

)
dηdx

= mσ4EpX

(
x2
)
+ 2mσ2µXµH +mEpH

(
η2
)
+ bσ2µX + bµH −σ2EpX

(
x2
)
−µHµX

= mσ4EpX

(
x2
)
+mEpH

(
η2
)
+ bσ2µX −σ2EpX

(
x2
)

!
= 0 (A.33)

and equation (A.29) gives
ˆ
R

ˆ
R
2pX (x)pH (η)

(
m
(
σ2x+ η

)
+ b− x

)
dηdx= mσ2µX +mµH + b−µX

!
= 0 (A.34)
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resulting in

b= µX −mσ2µX. (A.35)

Inserting the last equation into equation (A.33) yields

mσ4EpX

(
x2
)
+mEpH

(
η2
)
+σ2µ2

X −mσ4µ2
X −σ2EpX

(
x2
) !

= 0

⇔ mσ4VarpX (x)+mVarpH (η) −σ2VarpX (x) = 0

⇔ m=
σ2VarpX (x)

σ4VarpX (x)+VarpH (η)
(A.36)

and

b=

(
1− σ4VarpX (x)

σ4VarpX (x)+VarpH (η)

)
µX. (A.37)

The formulas form and b correspond to the unconstrained solution of problem (4.28). In order
to satisfy the constraint on m, we need to guarantee that

1
1+L

⩽ σ2VarpX (x)
σ4VarpX (x)+VarpH (η)

⩽ 1
1−L

. (A.38)

If this is not satisfied, we must require λ1 > 0 or λ2 > 0, which we will deal with in the fol-
lowing paragraphs.
Case λ1 > 0, λ2 = 0: If λ1 > 0, equation (A.30) directly yields

m=
1

1−L
. (A.39)

For b, we again obtain

b= µX −mσ2µX =

(
1− σ2

1−L

)
µX (A.40)

as equation (A.29) is independent of λ1 and λ2. Furthermore, equation (A.28) implies

ˆ
R

ˆ
R
pX (x) pH (η)

(
σ2x+ η

) (
m
(
σ2x+ η

)
+ b− x

)
dηdx+λ1m

!
= 0

⇔ λ1 = 2
σ2VarpX (x) −mσ4VarpX (x) −mVarpH (η)

m
. (A.41)

In combination with the condition λ1 > 0 we now obtain

σ2VarpX (x)
σ4VarpX (x)+VarpH (η)

>
1

1−L
. (A.42)

Case λ1 = 0, λ2 > 0: The same line of reasoning as in the preceding case yields
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m=
1

1+L
(A.43)

b= µX −mσ2µX =

(
1− σ2

1+L

)
µX (A.44)

σ2VarpX (x)
σ4VarpX (x)+VarpH (η)

<
1

1+L
. (A.45)

Observe that the case λ1 > 0 and λ2 > 0 is not possible as there is no m satisfying
equations (A.30) and (A.31) simultaneously for 0< L< 1. The uniqueness of the solution
directly follows from the uniqueness of m and b, which concludes the proof.

Appendix B. MAP estimation and its interpretation as an iResNet

Consider a linear inverse problem Ãx= y with Ã ∈ L(X,Y) as in remark 2.1, where noisy data
yδ ∈ Y is given. One established approach in Bayesian inverse problems is the so-called MAP
(maximum a posteriori) estimator

xMAP = argmax
x∈X

p
(
x|yδ

)
. (B.1)

The posterior density p(x|yδ) can be derived via Bayes rule from the pdf’s of the prior (x∼
pX), the noise (yδ −Ax∼ p̃H) and the data (yδ ∼ pY). Using this and the monotonicity of the
logarithm, one obtains

xMAP = argmax
x∈X

p̃H
(
yδ − Ãx

)
pX (x)

pY (yδ)

⇔ xMAP = argmax
x∈X

p̃H
(
yδ − Ãx

)
pX (x)

⇔ xMAP = argmin
x∈X

− log
(
p̃H
(
yδ − Ãx

))
− log(pX (x)) . (B.2)

Here, one can observe a well-known similarity to variational regularization schemes. In the
case of Gaussian noise with noise level δ > 0, i.e.

p̃H (η̃) ∝ exp

(
− 1
2δ2

‖η̃‖2
)

(B.3)

it holds

xMAP = argmin
x∈X

−1
2
‖Ãx− yδ‖2 − δ2 log(pX (x)) . (B.4)

The negative log-likelihood (NLL) − logpX can be interpreted as a penalty term, weighted
with the squared noise level δ2. If− logpX is differentiable, we can use the first-order optimality
condition and derive

0 = Ã∗ (ÃxMAP − yδ
)
− δ2∂ (logpX)(xMAP)

⇒ Ã∗yδ = Ã∗ÃxMAP − δ2∂ (logpX)(xMAP)

⇒ xMAP =
(
Id−

(
Id− Ã∗ÃxMAP + δ2∂ (logpX)

))−1 (
Ã∗yδ

)
, (B.5)

where the last implication only holds if Ã∗Ã− δ2∂(logpX) is invertible (which is guaranteed,
e.g. in case of a convex NLL).
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Figure 10. MAP estimation with iResNet. For large singular values σ2
j > 1− L, the

NLL is not very restricted (can be nonconvex) to guarantee Lip( fθ,j) ⩽ L< 1. For small

singular values σ2
j ⩽ 1− L, the NLL has to be (strongly) convex to guarantee that the

slope of fθ,j is smaller than 1−σ2
j (and smaller than L).

Now, we can interpret (B.5) as an iResNet approach for solving the inverse problem

Ax= z (B.6)

whereA= Ã∗Ã and z= Ã∗y. It holds xMAP = φ−1
θ (zδ) = (Id− fθ)−1(Ã∗yδ) if the residual layer

is given by

fθ = Id−A+ δ2∂ (logpX) . (B.7)

Thus, MAP estimation with an iResNet is possible as long as the above-defined f θ has a
Lipschitz constant of at most L< 1.

We can derive conditions for the prior pX and the noise level δ from this Lipschitz constraint
by making use of assumption 3.1, i.e. stochastic independence of the components xj ∼ pX,j and
the eigendecomposition of A. In this setting, the components can be handled separately and,
thus,

fθ,j =
(
1−σ2

j

)
Id+ δ2∂ (logpX,j) . (B.8)

To obtain further insights, we distinguish between large eigenvalues (i.e. σ2
j > 1−L) and

small ones (i.e. σ2
j ⩽ 1−L).

Remark B.1. The prior pX,j corresponding to a large eigenvalue can have a rather arbitrary
character. The only important property is that the derivative of the NLL (i.e. ∂(logpX,j)) must
be Lipschitz continuous. Because in this case, for small enough δ, it holds

Lip
(
fθ,j
)

⩽
(
1−σ2

)
+ δ2Lip(∂ (logpX,j)) ⩽ L. (B.9)

This is visualized in the left plot of figure 10.
However, for smaller eigenvalues, it holds 1−σ2 ⩾ L. Hence, the prior must decrease the

slope of fθ,j. This holds true if theNLL of the prior is convex (or even strongly convex). Because
then, ∂(logpX,j) is monotonously decreasing and δ can again be chosen s.t.

Lip
(
fθ,j
)

= Lip
((
1−σ2

)
Id+ ∂ (logpX,j)

)
⩽ L (B.10)

holds. An example for such a pX,j is a Gaussian prior, where ∂(logpX,j) is a linear function
with a negative slope (see the right plot of figure 10 and the subsequent derivations).
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B.1. Example prior distributions

To exemplify the previous observations, let us look at two commonly used prior distributions,
namely the Gaussian distribution and the Laplace distribution. In the case of the Gaussian
distribution, we have

pX,j (x) =
1√
2πb2j

exp

(
− (x−µj)

2

2b2j

)
(B.11)

for all j ∈ N with mean µj ∈ R and variance b2j > 0. Consequently, for the residual layer, we
obtain

fj (x) =

(
1−σ2

j − δ2

b2j

)
x+

δ2µj
b2j

for x ∈ R (B.12)

with Lipschitz constant Lip( fj) = |1−σ2
j − δ2/b2j |. Hence, similar to the observations in the

previous remark, for singular values with 1−σ2
j < L, the Lipschitz constraint Lip( fj) ⩽ L is

fulfilled for all δ and bj. In the case 1−σ2
j ⩾ L, δ and bj need to satisfy δ

2
/b2j ⩾ 1−σ2

j −L to

guarantee Lip( fj) ⩽ L.
In the case of the prior distribution being a Laplacian, i.e.

pX,j (x) =
1√
2bj

exp

(
−|x−µj|

bj

)
for x ∈ R (B.13)

with mean µj ∈ R and variance 2b2j > 0, the subgradient of logpX,j is given by

∂ (logpX,j)(x) =





1
bj

x< µj[
− 1

bj
, 1
bj

]
x= µj

− 1
bj

x> µj

for x ∈ R. (B.14)

Consequently, the residual layer for the Laplacian prior distribution is given by

fj (x) =





(
1−σ2

j

)
x+ δ2

bj
x< µj[(

1−σ2
j

)
x− δ2

bj
,
(
1−σ2

j

)
x+ δ2

bj

]
x= µj(

1−σ2
j

)
x− δ2

bj
x> µj

for x ∈ R, (B.15)

which is not Lipschitz-continuous. As a result, the Laplace distribution does not satisfy the
conditions of remark B.1.

In summary, the previous considerations illustrate that MAP estimation with a Gaussian
noise model can also be represented by the proposed iResNet approach for certain prior dis-
tributions, guaranteeing invertibility.

Appendix C. Approximation training in diagonal architecture with dependent
data and noise distribution

In section 3, we assumed that the random variables x∼ pX and η ∼ pH are independent.
However, one can obtain a more general version of lemma 3.1 with less restrictive assump-
tions on the joint data and noise distribution. To this end, we denote by p : R2 → [0,∞) the
joint probability density function with marginal distributions pX(x) =

´
R p(x,η)dη, pH(η) =
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´
R p(x,η)dx and assume that the respective first and second moments exist. In this setting, the
minimization problem of the approximation training reads

min
f∈F

ˆ
R2

p(x,η) |
(
1−σ2

)
x− η− f(x) |2 d(x,η) (C.1)

and the subsequent lemma provides a closed-form solution of the minimizer of problem (C.1)
in the case L< 1−σ2.

Lemma C.1. Let F = {f ∈ C(R) |∃m ∈ [−L,L],b ∈ R : f(x) = mx+ b} and L< 1−σ2.
Then,

f∗ (x̂) =





Lx̂+
(
1−σ2 −L

)
µX −µH if Covp(x,η)

VarpX (x)
< 1−σ2 −L(

1−σ2 − Covp(x,η)
VarpX (x)

)
x̂+

Covp(x,η)
VarpX (x)

µX −µH if Covp(x,η)
VarpX (x)

∈
[
1−σ2 −L,1−σ2 +L

]

−Lx̂+
(
1−σ2 +L

)
µX −µH if Covp(x,η)

VarpX (x)
> 1−σ2 +L

(C.2)

is the unique solution of the minimization problem (C.1), whereµX,µH denote the expected val-
ues of the marginal distributions, Covp the covariance w.r.t. (x,η) ∼ p and VarpX the variance
w.r.t. x∼ pX.

Proof. For a function f of the form f(x) = mx+ b with the constraint m2 ⩽ L2, we can
solve (C.1) by using the Lagrangian

K(m,b,λ) =

ˆ
R2

p(x,η) |
(
1−σ2 −m

)
x− η− b|2 d(x,η)+λ

(
m2 −L2

)
. (C.3)

Observe that the integral is well-defined due to the existence of the first and second moments
of p. In addition, the convexity, coercivity, and continuity of the integral term w.r.t. (m, b)
implies that a minimizer exists. The minimizer must satisfy the necessary conditions (KKT
conditions)

∂K
∂m

(m,b,λ) = −2
ˆ
R2

p(x,η)
((
1−σ2 −m

)
x− η− b

)
xd(x,η)+ 2λm

!
= 0, (C.4)

∂K
∂b

(m,b,λ) = −2
ˆ
R2

p(x,η)
((
1−σ2 −m

)
x− η− b

)
d(x,η)

!
= 0, (C.5)

λ
(
m2 −L2

) !
= 0, (C.6)

λ⩾ 0. (C.7)

Exploiting the marginal distribution pX, pH and rearranging (C.4) for m and (C.5) for b
leads to

m=

(
1−σ2

)
EpX

(
x2
)
− bµX − Ep (x · η)

EpX (x2)+λ
, (C.8)

b=
(
1−σ2 −m

)
µX −µH, (C.9)
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where we use the abbreviated notation Ep for E(x,η)∼p, EpX for Ex∼pX and EpH for Eη∼pH .
Combining both equations yields

(
1− µ2

X

EpX (x2)+λ

)
m=

(
1−σ2

)(
EpX

(
x2
)
−µ2

X

)
− (Ep (x · η) −µXµH)

Ep (x2)+λ

⇔ VarpX (x)+λ

EpX (x2)+λ
m=

(
1−σ2

)
VarpX (x) −Covp (x,η)

EpX (x2)+λ

⇔ m=
(
1−σ2

) VarpX (x)
VarpX (x)+λ

− Covp (x,η)
VarpX (x)+λ

. (C.10)

In order to determine the value of λ, we need to distinguish two cases.

(I): Covp(x,η) ⩽ 0:
Since 1−σ2 > L holds by assumption, the case λ= 0 is not possible, and we need λ> 0
to ensure m⩽ L. Then, (C.6) directly implies m=L as (C.10) cancels out the possibility
m= −L. Thus we also know b= (1−σ2 −L)µX −µH.

(II): Covp(x,η)> 0:
In this case, we need to distinguish the cases λ= 0 and λ> 0.
(IIa): λ= 0:

In this case, we have

m=
(
1−σ2

)
− Covp (x,η)

VarpX (x)
. (C.11)

The constraint that m⩽ L and m⩾ −L only holds true if

Covp (x,η) ⩾
(
1−σ2 −L

)
VarpX (x) (C.12)

∧ Covp (x,η) ⩽
(
1−σ2 +L

)
VarpX (x) (C.13)

taking into account that 1−σ2 > L.
(IIa): λ> 0:

In this case, we can have either m=L or m= −L. Rearranging (C.10) yields

λ=
1
m

((
1−σ2 −m

)
VarpX (x) −Covp (x,η)

)
. (C.14)

From this we deduce that λ> 0 holds if either

∗ m=L and Covp(x,η)< (1−σ2 −L)VarpX(x), or
∗ m= −L and Covp(x,η)> (1−σ2 +L)VarpX(x).

Exploiting (C.9) yields b in either case, which provides the desired f∗. In combination with
the observation that m and b are uniquely determined, the proof is complete.

Appendix D. Additional numerical experiments

The numerical results in section 5 are illustrated for the convolution operator A=Ma. In the
following, additional illustrations for the convolution operator and all corresponding results
for the Radon operator, described in section 5, are provided.
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Figure 11. Filter functions RL(σj,q) as defined in (5.9) corresponding to trained net-
works φθ(Lm,δℓ) for m= 1,2,3 (columns) and ℓ= 0,1,5 (rows), trained via approxim-
ation training (top) and via reconstruction training (bottom) on the MNIST dataset for
A=Ma.
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Figure 12. Reconstructions ψ∗
approx(z

δ
j ) trained via approximation training and ψ∗

reco(z
δ
j )

trained via reconstruction training at Lipschitz bound L2 for different singular values and
for noise levels ‘zero’ (δ0, top row), ‘small’ (δ1,middle row) and ‘large’ (δ5, bottom row)
for Ã the Radon operator.
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Figure 13. Filter functions RL(σj,q) as defined in (5.9) corresponding to trained net-
works φθ(Lm,δℓ) for m= 1,2,3 (columns) and ℓ= 0,1,5 (rows), trained via approxima-
tion training (top) and via reconstruction training (bottom) on the bimodal dataset for Ã
the Radon operator.
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Figure 14. Reconstructions of an MNIST sample x= x(1) from the test dataset by
computing φ−1

θ(Lm,δℓ)
(Ax+ η̃) with η̃ ∼N (0, δℓId) for Lipschitz bounds Lm with m=

1,2,3 (columns) and noise levels δℓ = δ̂ℓ · stdMNIST with ℓ= 0,1,3,4 (rows) together
with corresponding filter functions for Ã the Radon operator. The top subfigure depicts
the reconstructions from networks trained via approximation training, and the bottom
subfigure corresponds to the networks optimized via reconstruction training.
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Table 2. SSIM andMSEmeasures corresponding to reconstructions of x(1) in figure 14.
Bold values indicate the best reconstruction quality with respect to the corresponding
error measure for a given noise level.

SSIM MSE

Approximation training L1 L2 L3 L1 L2 L3

δ0 0.3950 0.7202 0.8671 0.0307 0.0117 0.0023
δ1 0.3913 0.7083 0.8521 0.0306 0.0120 0.0025
δ3 0.3871 0.6569 0.6620 0.0306 0.0129 0.0087
δ4 0.3774 0.5480 0.5033 0.0311 0.0190 0.0459

SSIM MSE

Reconstruction training L1 L2 L3 L1 L2 L3

δ0 0.4161 0.6899 0.8545 0.0290 0.0124 0.0029
δ1 0.3989 0.6865 0.8464 0.0304 0.0126 0.0031
δ3 0.3913 0.6512 0.7267 0.0300 0.0134 0.0055
δ4 0.3934 0.5990 0.6254 0.0298 0.0149 0.0126

Figure 15. Test samples x(1) and x(2) (bottom left). Evaluations of the local approxima-
tion property via Emean(φθ(Lm),A), Ex(1)(φθ(Lm),A) and Ex(2)(φθ(Lm),A) for the approx-
imation training (top left) and the reconstruction training (top right), and evaluations
of the generalized approximation property via Ẽmean(φθ(Lm),A), Ẽx(1)(φθ(Lm),A) and

Ẽx(2)(φθ(Lm),A) for the reconstruction training (bottom right) for Lm = 1− 1/3m with
m= 1, . . . ,5 and Ã the Radon operator on the MNIST test dataset.
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Figure 16. Reconstruction errors MSEδℓ
reco(φθ(L,δℓ),A) (top row) and

SSIMδℓ(φθ(L,δℓ),A) (bottom row) for networks trained on noisy samples with
noise levels δℓ for ℓ= 0, . . . ,6 and reconstructions from noisy samples of the same
noise level for the approximation training (left) and for the reconstruction train-
ing (middle) with Lipschitz bounds Lm on the MNIST dataset for the Radon operator Ã.
Outcomes of optimal parameter choices for both training strategies over different noise
levels can be seen on the right-hand side.
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Invertible ResNets for Inverse Imaging Problems:

Competitive Performance with Provable Regularization

Properties

Clemens Arndt∗ Judith Nickel∗

December 17, 2024

Abstract

Learning-based methods have demonstrated remarkable performance in solving in-

verse problems, particularly in image reconstruction tasks. Despite their success, these

approaches often lack theoretical guarantees, which are crucial in sensitive applica-

tions such as medical imaging. Recent works by Arndt et al (2023 Inverse Problems

39 125018, 2024 Inverse Problems 40 045021) addressed this gap by analyzing a data-

driven reconstruction method based on invertible residual networks (iResNets). They

revealed that, under reasonable assumptions, this approach constitutes a convergent

regularization scheme. However, the performance of the reconstruction method was

only validated on academic toy problems and small-scale iResNet architectures. In

this work, we address this gap by evaluating the performance of iResNets on two real-

world imaging tasks: a linear blurring operator and a nonlinear diffusion operator.

To do so, we extend some of the theoretical results from Arndt et al to encompass

nonlinear inverse problems and offer insights for the design of large-scale performant

iResNet architectures. Through numerical experiments, we compare the performance of

our iResNet models against state-of-the-art neural networks, confirming their efficacy.

Additionally, we numerically investigate the theoretical guarantees of this approach

and demonstrate how the invertibility of the network enables a deeper analysis of the

learned forward operator and its learned regularization.

∗Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany. Equal contribution.
Alphabetical author order. Emails: carndt@uni-bremen.de, junickel@uni-bremen.de
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1 Introduction

Inverse problems arise in a wide range of applications, such as image processing, medical

imaging, and non-destructive testing. These problems share a common objective: recover-

ing an unknown cause from possibly noisy measurement data by inverting the measurement

process (i.e., the forward operator). A major challenge is that the causes often depend dis-

continuously on the observed data, a characteristic that makes these problems ill-posed. To

address this, the problems need to be regularized in order to allow for stable reconstructions.

However, this adjustment of the problem must be small to ensure that the solutions remain

accurate.

The theory behind classical regularization schemes is well established, and provides strong

guarantees regarding their regularization properties [7]. Recently, deep learning based ap-

proaches have demonstrated a remarkable performance in solving inverse problems. Many

of these methods are build on classical algorithms, e.g., unrolled iterative schemes [14] or

plug-and-play methods [27]. However, the theoretical understanding in terms of provable

guarantees remains limited. A key concern is the lack of stability in most approaches, which

can pose significant risks in safety-critical applications. For this reason, there has been a

growing body of research aimed at investigating regularization properties for deep learning

methods (cf. “related literature” below).

We tackle the challenges of ill-posedness with a supervised learning approach based on

invertible residual networks (iResNets). The basic idea is to approximate the forward oper-

ator with the forward pass of the network and use the inverse to solve the inverse problem.

A general convergence theory, providing theoretical guarantees for iResNets, has been de-

veloped in [2]. In addition, [3] analyzed different training strategies, and investigated to

what extend iResNets learn a regularization from the training data. However, this approach

has only been tested on simplified toy examples so far. Thus, the question arises whether

iResNets are competitive with state-of-the-art methods in real-world tasks.

To address this, we evaluate the performance of iResNets through extensive numerical

experiments on both a linear blurring and a nonlinear diffusion problem, comparing the

results with state-of-the-art methods. Additionally, we provide valuable insights into de-

signing effective invertible architectures. Beyond the theoretical regularization properties

of the iResNet reconstruction approach we demonstrate how the invertibility allows for an

interpretation of the learned forward operator and its regularization, thereby reducing the

“black-box” nature commonly associated with learned regularization techniques.

The manuscript is organized as follows. We begin in Section 2 by introducing iResNets

and extending their regularization theory to encompass nonlinear forward operators. Fol-
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lowing this, in Section 3, we discuss the types of problems where iResNets are particularly

well-suited, with an emphasis on the problem settings for our numerical experiments. In

Section 4, we report our numerical results. First, we describe the details of the invertible

architecture in Section 4.1. Then, we compare the reconstruction quality of iResNets with

several other common deep learning approaches in Section 4.2. Finally, we investigate the

learned regularization by comparing the forward pass of the trained iResNet with the true

forward operator in Section 4.3. We conclude in Section 5 with a summary of our findings

and suggestions for future research directions.

Related literature

In recent years, as neural networks have achieved remarkable performance, the focus on in-

terpretability and providing theoretical guarantees for deep learning algorithms has gained

increasing importance. This is reflected in the growing body of research dedicated to ad-

dressing these concerns.

A comprehensive overview of deep learning methods with regularization properties can

be found in [16]. Furthermore, [18] presents stability and convergence results for deep equi-

librium models. To achieve these results, the learned component of the equilibrium equation

must meet specific conditions, which can be satisfied using iResNets, for example. Based on

the classical theory of variational regularization, [15, 17] introduced the adversarial convex

regularizer. This approach relies on architecture restrictions which enforce strong convexity

in order to obtain a stable and convergent regularization scheme.

One notable contribution aiming at enhancing the interpretability of the learned solution

is the DiffNet architecture [4], which is specifically designed to model potentially nonlinear

diffusion processes. Inspired by the structure of numerical solvers, the network consists

of multiple blocks representing discrete steps in time. Within each block, a differential

operator, computed by a small subnetwork, is applied to the input. This design results in

a highly parameter-efficient architecture that is fast to train and facilitates the analysis and

interpretation of the differential operations.

In addition to research focused on providing theoretical guarantees or improving the inter-

pretability of learned solutions, several approaches exhibit structural similarities to iResNets.

One such method is the proximal residual flow [11], a ResNet designed to be invertible, where

the residual functions are constrained to be averaged operators, differing from the Lipschitz

constraint we use in this work. This architecture has been used as a normalizing flow for

Bayesian inverse problems. In [24], invertibility is achieved by considering numerical solvers

of ordinary differential equations with a monotone right-hand-side, resulting in a ResNet-like

3



architecture with constraints similar to iResNets. This approach is primarily used to obtain

learned nonexpansive denoisers, which are desirable for plug-and-play schemes. Similarly,

[22] interprets convolutional ResNets as discretized partial differential equations, deriving

stability results for the architecture using monotonicity or Lipschitz conditions.

We note that approaches which achieve both a high numerical performance and strong

theoretical guarantees such as stability and convergence are still quite rare in general. There-

fore, our iResNet approach provides an advantageous combination of highly desirable prop-

erties.

2 iResNets for inverse problems

We study iResNets φθ : X → X with network parameters θ acting on a Hilbert space X,

where

φθ = φθ1,1 ◦ ... ◦ φθN ,N (2.1)

with N ∈ N and φθi,i : X → X for i ∈ {1, . . . , N}. Each subnetwork φθi,i is defined as

φθi,i = Id− fθi,i for i ∈ {1, . . . , N}

with Lipschitz continuous residual functions fθi,i : X → X satisfying Lip(fθi,i) ≤ Li < 1.

The bound on the Lipschitz constant of fθi,i allows for an inversion of the subnetworks φθi,i

via Banach’s fixed-point theorem with fixed-point iteration

xk+1 = z + fθi,i(x
k)

converging to x = φ−1
θi,i

(z) for z ∈ X. Moreover, each subnetwork φθi,i and its inverse φ−1
θi,i

satisfy the Lipschitz bounds

Lip(φθi,i) ≤ 1 + Li and Lip(φ−1
θi,i

) ≤ 1

1− Li

.

We refer the reader to [2, 6] for a detailed derivation of these results. The properties of the

subnetworks directly translate to the concatenated network φθ making it invertible as each

subnetwork is invertible with

Lip(φθ) ≤
N∏

i=1

(1 + Li) and Lip(φ−1
θ ) ≤

N∏

i=1

1

1− Li

. (2.2)
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The Lipschitz constant of the inverse φ−1
θ is crucial for ensuring the stability of the recon-

struction scheme, as we will elaborate on later. To simplify our discussion, we define a

Lipschitz parameter L for the inverse φ−1
θ such that

Lip(φ−1
θ ) ≤ 1

1− L
=

1∏N
i=1(1− Li)

. (2.3)

The aim is to apply the above defined iResNets to solve ill-posed inverse problems.

Given that the input and output spaces of iResNets are inherently identical, we restrict our

consideration to problems of the form

F (x) = z

where F : X → X is a (possibly nonlinear) operator, and both the ground truth data x ∈ X

and the observed data z ∈ X belong to the same Hilbert space X. For an example of

how to transfer a linear operator A : X → Y between different Hilbert spaces X and Y to

the aforementioned setting, we refer the reader to our earlier publications [2] and [3]. The

objective is then to recover the unknown ground truth x† ∈ X via iResNets, given noisy

measurements zδ ∈ X with noise level δ > 0 satisfying ∥zδ−F (x†)∥ ≤ δ. To do so, we follow

the subsequent reconstruction approach:

(I) The iResNet φθ : X → X is trained to approximate the forward operator F .

(II) The inverse φ−1
θ is used to reconstruct the ground truth x† from zδ.

The task of reconstructing x† from the data zδ poses two main challenges making it partic-

ularly difficult to solve. First, the solutions x† may not depend continuously on the data z,

rendering the problem ill-posed. Second, as already mentioned, the observed data is usu-

ally corrupted by noise. Because of the interplay between these two issues, incorporating

prior knowledge about potential solutions x† is essential to regularize the inverse problem.

A regularization scheme aims to address the ill-posedness of the problem by using a recon-

struction algorithm that ensures the existence and uniqueness of solutions, stability w.r.t. zδ

and convergence to the ground truth x† as the noise level δ converges to zero. In particular

for nonlinear inverse problems, some of these properties are often hard to achieve, even with

classical variational regularization schemes. One important reason for this is that the data

discrepancy term ∥F (x)− zδ∥2 might be non-convex w.r.t. x. Thus, the minimizers of regu-

larization functionals are not guaranteed to be unique and the most common stability results

only hold for subsequences and (dependent on the penalty functional) sometimes only with

weak convergence [23, Proposition 4.2], [12, Theorem 3.2], [9, Theorem 10.2].
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The above defined reconstruction approach based on iResNets effectively tackles the

challenges posed by inverse problems, which is mainly attributed to its Lipschitz continuous

inverse. To be more precise, the existence and uniqueness of φ−1
θ (zδ) is synonymous with the

invertibility of φθ and thus automatically fulfilled. Moreover, the stability, i.e., continuity of

φ−1
θ , directly follows from Equation 2.2, c.f. [2, Lemma 3.1]. The only aspect not directly

guaranteed is the convergence of φ−1
θ (zδ) to the ground truth as δ → 0, which requires

certain additional prerequisites. Simply put, the convergence depends on the success of the

training and the expressivity of the trained network. In [2], a convergence result has been

derived in the setting of a linear forward operator and an iResNet consisting of a single

subnetwork, i.e. N = 1. For this, we made use of an index function generalizing the concept

of convergence rates. Recall that an index function is a continuous and strictly increasing

mapping ψ : R≥0 → R≥0 with ψ(0) = 0. The convergence result of [2] can be directly

generalized to nonlinear forward operators and iResNets as defined in Equation (2.1). To do

so, the network parameters θ must depend on the Lipschitz parameter L, as introduced in

Equation 2.3. We emphasize this dependency by adapting the notation to φθ(L).

Theorem 2.1 (Convergence - local approximation property, c.f. [2]). For x† ∈ X, let zδ ∈ X

satisfy ∥zδ −F (x†)∥ ≤ δ. Moreover, assume that the network φθ(L) with network parameters

θ(L) ∈ Θ(L) for L ∈ [0, 1) satisfies the local approximation property

∥F (x†)− φθ(L)(x
†)∥ = O((1− L)ψ(1− L)) (as L→ 1) (2.4)

for some index function ψ.

If the Lipschitz parameter L : (0,∞) → [0, 1) is chosen such that

L(δ) → 1 ∧ δ

1− L(δ)
→ 0 for δ → 0, (2.5)

then it holds

∥φ−1
θ(L(δ))(z

δ)− x†∥ → 0 for δ → 0.

Proof. For simplicity, we abbreviate φθ(L(δ)) by φδ in this proof. The Lipschitz continuity of

the inverse, c.f. Equation 2.3, directly implies

∥φ−1
δ (zδ)− x†∥ ≤ ∥φ−1

δ (zδ)− φ−1
δ (F (x†))∥+ ∥φ−1

δ (F (x†))− x†∥

≤ 1

1− L(δ)
∥zδ − F (x†)∥+ ∥φ−1

δ (F (x†))− φ−1
δ (φδ(x

†))∥

≤ δ

1− L(δ)
+

1

1− L(δ)
∥F (x†)− φδ(x

†)∥.
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The last inequality yields the desired assertion due to (2.4) and (2.5) in combination with

limL→1 ψ(1− L) = 0.

This theorem reveals a relation between the convergence of the iResNet and its approx-

imation capabilities and provides a verifiable condition in form of the local approximation

property. A weaker (and sufficient) condition for convergence is given by

∥φ−1
θ(L)(F (x

†))− x†∥ → 0 as L→ 1, (2.6)

c.f. [2, Remark 3.2], which is more in line with the reconstruction training setting introduced

in [3] and explained in Section 4.

3 Approximation capabilities of iResNets and problem

setting

In this section, we discuss the types of problems for which iResNets are a suitable choice and,

in particular, the problem setting of our numerical experiments. Due to their architecture

constraints, iResNets cannot approximate arbitrary forward operators F : X → X. Each

subnetwork can only fit Lipschitz continuous (due to Lip(φθ,k) ≤ 1 + Lk) and monotone

(due to ⟨φθ,k(x), x⟩ = ∥x∥2 − ⟨fθ,k(x), x⟩ ≥ (1 − Lk)∥x∥2) functions. This drawback can be

partly compensated by using an architecture with multiple subnetworks, see Section 4.1 for

more details. Essentially, iResNets are inherently suited for any problem where the input

and output spaces are identical, and learning a deviation from identity is beneficial. This

includes applications such as image processing (e.g., denoising, deblurring), problems in the

context of partial differential equations (PDEs) or pre-processing and post-processing tasks.

For our numerical experiments, we consider a nonlinear diffusion problem and a linear

blurring operator. They are particularly interesting, because several works observed an

analogy between ResNets and numerical solvers for ODEs [6, 22, 24]. In the following, we

briefly review this relationship by focusing on the invertibility of the iResNet-subnetworks.

Let X = L2(Ω) be the space of ground truth images and data with some domain Ω ⊂ Rn

and F : X → X be an operator which maps a clean image to a diffused version of it.

More precisly, we consider the forward problem F (u0) = u(T, ·) for some T > 0, where

u : R≥0 × Ω → R is the solution of the PDE

∂tu = divx (g(|∇xu|)∇xu) on (0, T ]× Ω, (3.1)

u(0, ·) = u0 on Ω,

7



known as Perona-Malik diffusion [19], with g ∈ C1(R≥0) and zero Dirichlet or zero Neumann

boundary condition on ∂Ω.

By considering the explicit Euler method

ut+1 = ut + h · div (g(|∇xut|)∇xut)

for solving the PDE numerically, a similarity to the structure of a ResNet (identity plus

differential operator) can be observed. However, since the differential operator is not contin-

uous w.r.t. ut ∈ L2(Ω), fitting the contractive residual function fθ,i of an iResNet-subnetwork

to it might be challenging.

This changes, when we consider the implicit Euler method

ut+1 = ut + h · div (g(|∇xut+1|)∇xut+1) ,

which is an elliptic PDE for ut+1. For simplicity, we assume g ≡ 1 in the following and

analyze the solution operator Sh : L
2(Ω) → L2(Ω), Sh(ut) = ut+1. The following Lemma

shows that Sh is suitable for being approximated with iResNet-subnetworks.

Lemma 3.1. For g ≡ 1, the solution operator Sh is linear and firmly nonexpansive, i.e.,

∥Shu∥2 + ∥(Id− Sh)u∥2 ≤ ∥u∥2.

For the proof, see Appendix A.

Fitting Sh with a subnetwork φθ,i requires that fθ,i ≈ Id−Sh. According to the previous

lemma, this mapping has a Lipschitz constant of at most one. For most inputs u and v,

∥(Id−Sh)u− (Id−Sh)v∥ will even be strictly less than ∥u−v∥. Therefore, Sh is well-suited

for approximation using iResNets.

4 Numerical Results

To validate the performance of iResNets in solving inverse problems and provide guidelines

on investigating their regularization capabilities, we conduct numerical experiments on two

forward operators. As discussed in Section 3, diffusion and blurring operators are particularly

suitable for this purpose. Therefore, we consider a linear blurring operator defined as a

convolution with a Gaussian kernel with a kernel size of 11 × 11 and standard deviation of

5/3. Additionally, we examine an anisotropic nonlinear diffusion problem governed by the

PDE in Equation (3.1), utilizing the Perona-Malik filter function g(|∇xu|) = 1/1+λ−2|∇xu|2

8



with contrast parameter λ = 0.1. The diffused image is obtained after 5 steps of Heun’s

method with step size 0.15 and zero Neumann boundary conditions.

All networks are trained on pairs of distorted and clean grayscale images from the STL-10

dataset [1], where we use 16 284 images for training, 64 for validation and 128 for testing

and evaluation. The distorted images are generated by applying the forward operator to the

clean images, combined with additive Gaussian white noise with standard deviation δ > 0.

We consider three different levels of noise in our numerical experiments, namely δ = 0.01,

δ = 0.025 and δ = 0.05.

In [3], two fundamentally different approaches for training an iResNet to solve an inverse

problem are discussed. Both methods require supervised training with paired data (xi, z
δ
i ).

The first approach, referred to as approximation training, aims at training φθ to approximate

F via the training objective

min
θ

∑

i

∥φθ(xi)− zδi ∥2.

The second approach, referred to as reconstruction training, focuses on training the inverse

φ−1
θ to reconstruct the ground truth via the training objective

min
θ

∑

i

∥φ−1
θ (zδi )− xi∥2. (4.1)

Reconstruction training is preferable for obtaining a data-driven regularization method, since

it results in an approximation of the posterior mean estimator of the training data distri-

bution [3, Lemma 4.2]. In contrast, approximation training overlooks many features of the

training data distribution, with its regularizing effect primarily arising from the architec-

tural constraints [3, Theorem 3.1]. For this reason, we perform reconstruction training in

our numerical experiments. It is important to note that this approach requires computing

the network’s inverse during training, which is done via a fixed-point iteration within each

subnetwork, c.f. Section 2.

The source code for the experiments in this section is available on GitLab1.

4.1 Architecture

In this section, we discuss key practical considerations in the design of iResNets to achieve

high-performing networks, along with details of the architectures used in our numerical

experiments. We tested a small and a big architecture (denoted as “small iResNet” and

“iResNet”, respectively), both designed according to (2.1). Each residual function fθi,i is

1https://gitlab.informatik.uni-bremen.de/junickel/iresnets4inverseproblems
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Figure 1: Architecture of the iResNets used in our numerical experiments.

defined as a 5×5-convolution followed by a soft shrinkage activation function with learnable

threshold and a 1×1-convolution. Soft shrinkage activation is very suitable for the esti-

mation of Lipschitz constants because, unlike ReLU, its lokal Lipschitz constant equals its

global Lipschitz constant everywhere except at a small interval. More details about both

architectures are listed in Table 1 and a visualization of the network design is depicted in

Figure 1.

We made three different choices for the Lipschitz parameter of the architectures, i.e.,

L = 0.95, L = 0.99 and L = 0.999, to be able to test different levels of stability. Unless

otherwise stated, the reported results correspond to the network with the highest L because

it is the least restricted. To control the Lipschitz constants of the residual functions fθi,i, we

need to regulate the operator norms of each convolution, which can be efficiently computed

with power iterations. Thus, before performing a convolution, we apply a projection to the

(trainable) network parameters to obtain convolutional weights which fulfill the desired op-

erator norm. It is important to note that during training, automatic differentiation accounts

for both the projection step and the computation of operator norms. This strategy was

already used in [3] and it prevents the gradient steps computed by the optimizer to be in

conflict with the Lipschitz constraint.

We opted for a relatively large number of subnetworks in our architectures (N = 12 for

the smaller and N = 20 for the larger) while keeping the residual functions fθ,i fairly shallow.

There are several reasons behind this design choice, which we will elaborate on below.

First, the Lipschitz constant of a neural network can be estimated from above by the

product of the Lipschitz constants of all layers, but this estimation can be far from tight, as

noted in [8]. This issue gets worse as the number of layers increases, which is why we chose

shallow sub-architectures to mitigate this problem.

Second, if Li is chosen to be very close to one, the invertibility condition Lip(fθ,i) < 1

might in fact be violated due to small numerical errors. This can lead to severe problems

when attenpting to invert φθ,i. By using a large number of subnetworks N , we can assign
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Table 1: Network and training parameters of our iResNets trained on a system with an AMD
EPYC 7742 64-Core processor and a GeForce RTX 3090 GPU.

iResNet Small iResNet DiffNet U-Net ConvResNet
Subnetworks/Scales 20 12 5 5 20

Input channels 64 32 1 1 64
Hidden channels 128 64 32 16 - 256 128

Kernel size 5 5 3 5 5
Trainable parameters 4 263 700 640 140 101 310 5 468 705 4 263 873

Learning rate 1× 10−4 1× 10−3 2× 10−3 5× 10−4 1× 10−4

Epochs 500 300 100 500 300
Batch size 32 32 16 64 16
Optimizer Adam Adam Adam Adam Adam

Training time 6-7 days 1-2 days 1 hour 2 hours 15 hours

smaller, more stable values to Li while still achieving a large overall L value (see (2.3)). For

our small architecture with N = 12, we can, e.g., choose Li ≈ 0.438 to obtain L = 0.999.

Third, the residual functions fθ,i must be evaluated in each fixed point iteration for

the inversion of φθ,i. Smaller subnetworks make these computations faster. Additionally,

smaller Li values reduce the number of iterations required to reach a specific accuracy level.

Although a higher N increases the number of subnetworks to invert, the overall inversion

process is faster with shallow residual functions.

Fourth, a single iResNet-subnetwork has a Lipschitz constant of at most 1 + Li < 2 in

the forward pass. This implies that ∥φ−1
θ,i (z1) − φ−1

θ,i (z2)∥ ≥ 1
2
∥z1 − z2∥, which limits the

regularization capabilities of φ−1
θ,i since it cannot map different data z1, z2 arbitrarily close to

the same solution x†. Increasing the number of subnetworks alleviates this issue.

Fifth, while individual subnetworks are always monotone, concatenating several of them

allows for fitting increasingly non-monotone functions, thereby expanding the set of suitable

forward operators.

Finally, as we consider the solution operator of a PDE (see Section 3) as the forward

operator for our numerical experiments, a concatenated architecture is a natural choice.

A drawback of using multiple concatenated shallow subnetworks is that the number

of channels (i.e., the network’s width) can only be expanded within the residual func-

tions. The input and output dimension of all subnetworks has to be the same. To over-

come this limitation, we lift the inverse problem F : X → X to a multichannel problem

F̃ : XM → XM , F̃ (xj)k = F (xj) for j, k = 1, ...,M . Input and target images zδ, x† ∈ X

for training and evaluation of φθ are accordingly stacked to multichannel representations

(zδ, ..., zδ), (x†, ..., x†) ∈ XM . The mapping of the network’s output back to the original

space X is simply implemented as a mean over all channels. Note that in this setting φθ is
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not an invertible mapping on X but on XM .

To perform reconstruction training (4.1), the gradients of φ−1
θ are required. We use the

idea of deep equilibrium models [5] to avoid the memory-intensive process of backpropagation

through the potentially large number of fixed point iterations. This means that the derivative

of the fixed point x of

x− fθ,i(x) = z

w.r.t. θ and z is directly calculated via the implicit function theorem. In [10], this technique

has already been used for solving inverse problems to simulate an infinite number of layers

in unrolled architectures.

4.2 Performance and comparison to other models

In this section, we assess the performance of the iResNet reconstruction scheme and compare

it with both traditional and deep-learning-based reconstruction methods.

The performance of the iResNet and the small iResNet w.r.t. PSNR and SSIM across all

three noise levels δ depending on the Lipschitz parameter L is illustrated in Figure 2 for the

nonlinear diffusion operator and in Figure 3 for the linear blurring operator. One can observe

that the reconstruction performance increases as the Lipschitz parameter L approaches 1

for both forward operators and across all noise levels. Additionally, the larger iResNet

outperforms the smaller iResNet at Lipschitz parameters close to 1, while their performance is

similar on average at lower Lipschitz parameters. This behavior is expected, as the Lipschitz

constraint reduces the network’s expressiveness, particularly at smaller Lipschitz parameters.

Based on these observations, the following investigations will focus on the highest Lipschitz

parameter, L = 0.999.

To further assess the reconstruction quality of our iResNets, we compare their perfor-

mance against three other deep learning methods and the classical TV regularization. Specif-

ically, we implement a convolutional ResNet (ConvResNet) without Lipschitz constraints on

the residual functions, exhibiting the same network architecture as our iResNet, but with an

additional learnable 1× 1 convolution at the beginning and end of the network. This modi-

fication overcomes the need to transfer the problem to a multichannel problem as discussed

in Section 4.1. Additionally, we employ the widely recognized U-Net architecture [21] as well

as the DiffNet from [4], a specialized architecture based on non-stationary filters designed

specifically for diffusion problems. We optimize the hyperparameters of our iResNets, TV,

ConvResNet and U-Net on the validation set using random search. The hyperparameters of

DiffNet are adapted from [4], as they focus on a similar forward operator. The architecture,

training parameters and corresponding training times for all networks are detailed in Table 1.
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Figure 2: Reconstruction performance of iResNets dependent on the Lipschitz parameter L
for the nonlinear diffusion operator and different noise levels (δ = 0.01, 0.025, 0.05).
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Figure 3: Reconstruction performance of iResNets dependent on the Lipschitz parameter L
for the linear blurring and different noise levels (δ = 0.01, 0.025, 0.05).
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One can observe that the DiffNet has the fewest trainable parameters, followed by the small

iResNet, while the (larger) iResNet, U-Net and ConvResNet have a similar and significantly

higher number of parameters. Moreover, there is a considerable difference in training times:

DiffNet and U-Net converge within 1 − 2 hours, whereas our iResNets require several days

up to a week to converge. This is caused by the combination of the reconstruction training

objective and the network’s invertibility, c.f. Section 4.1.

The reconstruction quality in terms of PSNR and SSIM for all methods at different noise

levels is depicted in Figure 4 for the nonlinear diffusion and in Figure 5 for the linear blurring.

The networks substantially outperform the classical TV reconstruction, with the ConvResNet

achieving the highest SSIM and PSNR values across both forward operators. Our iResNet

exhibits a similar performance than DiffNet and U-Net. Notably, for the nonlinear diffusion

operator, the iResNet performs particularly well at high noise levels, while for the linear

blurring it surpasses both DiffNet and U-Net at all noise levels. The small iResNet achieves

slightly lower reconstruction quality compared to the larger iResNet, but it still significantly

outperforms TV reconstruction.

The quality of reconstructions produced by our iResNets is further validated through

comparative examples, as can be seen in Figure 6 for the nonlinear diffusion and in Figure 7

for the linear blurring at both the lowest and highest noise level. For both types of forward

operators, the visual performance of our iResNet closely matches that of the ConvResNet,

U-Net and DiffNet. Moreover, the TV reconstructions exhibit severe artifacts, especially in

the case of high noise and with the linear blurring operator. As anticipated, all methods

struggle to recover fine details at high noise levels.

These results demonstrate that our iResNets perform on par with state-of-the-art meth-

ods in the literature, albeit with a significantly longer training time due to their invertibility.

Among the compared methods, DiffNet appears to strike the best balance between the num-

ber of trainable parameters, training time, and performance. However, DiffNet is specifically

designed for diffusion problems, whereas our iResNets are more versatile and can be applied

to a broader range of forward operators, c.f. Section 3. Additionally, iResNets provide theo-

retical guarantees, and their invertibility allows for the interpretation of the learned operator,

as we will discuss in the following section. Due to the superior performance of our larger

iResNet compared to its smaller version, we will focus our subsequent investigations on the

former.
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Figure 4: Comparison of the reconstruction quality (top: PSNR, bottom: SSIM) between
the iResNet architectures (with L = 0.999) and other models for the nonlinear diffusion
operator across various noise levels.
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Figure 5: Comparison of the reconstruction quality (top: PSNR, bottom: SSIM) between the
iResNet architectures (with L = 0.999) and other models for the linear blurring operator
across various noise levels.

15



lo
w

n
o
is
e
(δ

=
0.
01
)

Ground truth iResNet
PSNR: 34.05, SSIM: 0.909

Small iResNet
PSNR: 33.93, SSIM: 0.908

TV
PSNR: 33.22, SSIM: 0.897

Blurred data
PSNR: 30.99, SSIM: 0.868

ConvResNet
PSNR: 34.22, SSIM: 0.915

U-Net
PSNR: 34.06, SSIM: 0.915

DiffNet
PSNR: 33.99, SSIM: 0.908

h
ig
h
n
o
is
e
(δ

=
0.
05
)

Ground truth iResNet
PSNR: 28.91, SSIM: 0.816

Small iResNet
PSNR: 28.82, SSIM: 0.816

TV
PSNR: 27.88, SSIM: 0.799

Blurred data
PSNR: 24.96, SSIM: 0.602

ConvResNet
PSNR: 28.99, SSIM: 0.816

U-Net
PSNR: 28.88, SSIM: 0.815

DiffNet
PSNR: 28.84, SSIM: 0.814
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operator.
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Figure 8: Mean inversion error ∥φ−1
θ(L),L(F (x))−x∥ on the test set for the nonlinear diffusion

(left) and the linear blurring operator (right). The parameter choice L(δ) required for our
convergence result in Theorem 2.1 and Equation (2.6) is given by L(0.01) = 0.999, L(0.025) =
0.99, L(0.05) = 0.95. To be more precise, for L = 0.999 the network was trained with
δ = 0.01, for L = 0.99 with δ = 0.025 and for L = 0.95 with δ = 0.05.

4.3 Investigation of regularization properties

In the previous section, we demonstrated that the proposed iResNets achieve competitive

reconstruction performance. Unlike most other methods, iResNets also come with theoretical

guarantees, as explained in Section 2. Specifically, they ensure the existence and uniqueness

of solutions φ−1
θ (zδ), as well as the stability of the resulting reconstruction scheme w.r.t.

zδ. The last criterion to verify for the iResNet reconstruction approach to qualify as a

regularization scheme is the convergence of φ−1
θ (zδ) to the ground truth x† as the noise level

δ approaches zero. In Theorem 2.1, we derived a convergence result for iResNets based on

the local approximation property (2.4), which we relaxed in Equation (2.6) by considering

the inversion error ∥φ−1
θ(L),L(Fx

†) − x†∥ as L(δ) → 1 for δ → 0 with a suitable parameter

choice rule L(δ). We depict the average inversion error on the test set depending on L(δ) for

the nonlinear diffusion (left) and the linear blurring (right) in Figure 8. It can be observed

that the error decreases as L(δ) → 1 for both forward operators, indicating that the iResNet

reconstruction approach meets the conditions for a convergent regularization scheme on

average.

Besides these theoretical guarantees, the proposed reconstruction approach allows for

accessing the learned forward operator. This opens the door to an in-depth investigation

of the nature of the learned regularization. To start with, observe that the accuracy of

the approximation of the true forward operator, w.r.t. MSE and SSIM, increases for all

Lipschitz parameters L as the noise level δ descreases, which can be seen in Figure 9 for

the nonlinear diffusion and the linear blurring operator. Moreover, one can observe that
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Figure 9: Approximation accuracy of the true forward operator by iResNets trained using
reconstruction training on data with varying noise levels (top row: nonlinear diffusion,
bottom row: linear blurring).

the best approximation performance, on average, is achieved with the highest Lipschitz

parameter. Consequently, selecting a Lipschitz parameter close to one is beneficial for both

target reconstruction and forward operator approximation. For this reason, we will focus all

subsequent investigations on L = 0.999.

Examples of the true forward operator and the learned forward operator for δ = 0.01

as well as δ = 0.05 can be seen in Figure 10. One can observe that the learned forward

operator resembles the true forward operator for small noise (δ = 0.01), displaying slightly

less blurring or diffusion in both linear and nonlinear cases. In contrast, at a higher noise

level (δ = 0.05), the learned forward operators tend to over-amplify details, especially edges

in the images. The reason for this is that for high noise levels the learned operators need to

exhibit a stronger regularization to be able to stably reconstruct the target images.

To provide a deeper understanding of the learned regularization, we present two ap-

proaches aiming at shedding some light on its nature. To do so, we first compare the local

ill-posedness of the true forward operators F with the learned operators φθ in Section 4.3.1
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Figure 10: Comparison of the forward operator (top row: nonlinear diffusion, bottom
row: linear blurring) with the trained iResNets for different noise levels. From left to
right: Ground truth image, blurred image using the forward operator with no added noise as
well as the output (forward pass) of the network trained with Lipschitz parameter L = 0.999
for noise level 0.01 and 0.05.

and we then analyze the behavior of φθ by clustering blurring kernel emerging from a lin-

earization of the network in Section 4.3.2. This approach allows us to understand how the

networks respond to various image structures. We would like to note that we present the

results of our investigations solely for the nonlinear diffusion operator, as the results were

comparable for the linear blurring operator. Moreover, we emphasize that while this paper

focuses on deblurring tasks, the proposed approaches are applicable to various problems

and should be viewed as exemplary methods for numerically investigating the regularizing

behavior of iResNets.

4.3.1 Directional derivatives and local ill-posedness

A nonlinear inverse problem is called locally ill-posed in a point x0 ∈ X, if any open

neighborhood of x0 contains a sequence (xk) such that F (xk) → F (x0) but xk ̸→ x0 [23,

Definition 3.15]. For differentiable F , this often entails that some directional derivatives

∂hF (x0) = F ′(x0)h are small. Accordingly, for our nonlinear diffusion operator F we expect

∥∂hF (x0)∥ to be small for certain directions h ∈ X, ∥h∥ = 1, dependent on the input image
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Figure 11: Computation of directions h for which the difference ∥∂hφθ(x0)∥ − ∥∂hF (x0)∥ is
particularly large (φθ trained for the nonlinear diffusion operator with δ = 0.01). The
direction vector h is displayed in color on the image x0 (grayscale). It can be interpreted as
a direction in which the network has learned a significant regularization. In the bottom row,
h is restricted to the subject of the image x0.
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Figure 12: Computation of directions h for which the difference ∥∂hφθ(x0)∥ − ∥∂hF (x0)∥ is
particularly large (φθ trained for the nonlinear diffusion operator with different noise
levels δ). For the three test images “Balloon”, “Boat” and “Dog”, we display ∥∂hφθ(x0)∥ in
red and ∥∂hF (x0)∥ in blue. The dashed lines show the results, where h is restricted to the
subject of the image (cf. Figure 11).
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x0 ∈ X.

In contrast, we expect the trained iResNet φθ to have learned a regularization for the

inverse problem. Thus, we anticipate ∥∂hφθ(x0)∥ ≫ ∥∂hF (x0)∥ for the same directions h.

The Lipschitz constraint even ensures that ∥∂hφθ(x0)∥ ≥ 1−L is guaranteed. Moreover, we

can use gradient ascent to find directions h ∈ X, ∥h∥ = 1 such that

∥∂hφθ(x0)∥2 − ∥∂hF (x0)∥2

is as large as possible. In other words, we look for a direction h in which the network has

learned the strongest regularization w.r.t. a given input image x0. We can also restrict h to

certain areas of the image x0 in order to analyze the regularization inside this area.

Figure 11 shows the resulting directions h of highest regularization for three different test

images x0. Note that gradient ascent does not lead to unique solutions and the directions

should therefore rather be seen as examples.

The first striking observation is that h consistently exhibits a checkerboard pattern.

This occurs because adding a small perturbation εh to x0 introduces numerous small edges,

which are subsequently blurred by the forward operator F . Since these small edges may

represent important image details, regularization by the iResNet is necessary. Additionally,

h is primarily concentrated in the smooth parts of the images, such as the uniform areas of

the background. In these regions, the introduction of small edges has the most pronounced

effect. Moreover, reconstructing a smooth background without any details is a relatively

simple task for a neural network, requiring only few information from the noisy and blurred

image zδ and relying more heavily on the learned prior. Therefore, it is optimal to apply

strong regularization in these areas. Even when h is restricted to the subject of the images,

it remains concentrated in the smoother regions.

An iResNet trained on higher noise levels is expected to apply a stronger regularization.

To verify this, we compare the values of ∥∂hφθ(x0)∥ for φθ trained on different noise levels

δ. The result is illustrated in Figure 12. For all three test images, we indeed observe that

the amount of regularization increases with δ.

4.3.2 Investigation of the learned forward operator by linearization

In the previous section, we observed that the iResNet has effectively learned to regularize,

particularly in smoother regions of the image. In this section, we aim to gain a deeper

understanding of this learned regularization by comparing the local behavior of our iResNet

φθ with that of the operator F . However, due to the inherent nonlinearity of both the

network and the operator, this analysis presents a significant challenge.
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To address this challenge, we approximate φθ and F around a given image x0 ∈ Rn×m

with the help of a first order Taylor expansion. The first order Taylor expansion TΨ(·, x0) :
Rn×m → Rn×m of a differentiable operator Ψ : X → X around x0 restricted to some pixel

(n0,m0) ∈ {1, . . . , n} × {1, . . . ,m} is given by

TΨ(x, x0)
∣∣
(n0,m0)

= Ψ(x0)
∣∣
(n0,m0)

+
〈
JΨ(x0)

∣∣
(n0,m0)

, x− x0

〉
+RΨ(x, x0)

∣∣
(n0,m0)

with Jacobian

JΨ(x0)
∣∣
(n0,m0)

=

(
∂Ψn0,m0

∂xk,l
(x0)

)

k=1,...,n, l=1,...,m

,

x ∈ Rn×m and remainder RΨ(·, x0) : Rn×m → Rn×m. In the setting of Ψ being our iResNet

or the nonlinear diffusion operator, the Jacobian can be interpreted as a linear blurring

kernel that approximates the nonlinear diffusion operations of the network and the operator,

respectively. This perspective allows us to assign a kernel to each pixel in the image x0,

providing a visual interpretation of φθ and F . This approach was first introduced in [25] in

the context of image classification, leading to the creation of so-called saliency maps, which

enable the interpretation of decisions made by image classification networks. While saliency

maps in classification tasks are limited to the number of classes, the large number of image

pixels in our setting makes manual analysis impractical. To address this, we opted to cluster

the kernels of φθ and F and then analyze the resulting clusters, respectively.

Before discussing the clustering results, we will first provide an overview of our calculation

pipeline. The computation of the Jacobians and the clustering is performed separately for

each image in the test set. This approach is necessary because we observed that clustering

becomes ineffective or fails to converge when the number of pixels exceeds 15 000. We found

that limiting the number of pixels per image to 1500 leads to a good trade-off between cluster

accuracy and computational efficiency.

We randomly select a set P of pixel indices, which remains the same across all images,

networks and the operator. For each pixel (n0,m0) in the set P and fixed image x0, we

calculate the Jacobians Jφθ(x0)
∣∣
(n0,m0)

and JF (x0)
∣∣
(n0,m0)

. For the network φθ, this can be

achieved efficiently via backpropagation giving access to the gradients of the input image.

Each Jacobian is then cropped to a 9 × 9 region centered around the pixel (n0,m0). This

cropping is performed because pixel values outside this region are typically near zero and do

not contain relevant information. In what follows, the cropped image is referred to as the

saliency map or linear blurring kernel. Before clustering, we normalize the values of these

saliency maps while preserving the sign of the values.

Finally, the transformed saliency maps are clustered using spectral clustering. In addition

to spectral clustering, we also evaluated other clustering techniques, ranging from primitive
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Forward operator L = 0.999, δ = 0.01 L = 0.999, δ = 0.025 L = 0.999, δ = 0.05

Figure 13: Clustering of the saliency maps of the operator and the network trained with
Lipschitz parameter L = 0.999 for different noise levels. The first row visualizes the clustering
with the ground truth image. The second row visualizes the clustering with the edges of the
ground truth image. Weak edges are coloured in grey and strong edges are coloured in black.

methods to more advanced approaches involving principal component analysis (PCA). How-

ever, the clustering results were all very similar, which is why we opted for the standard and

straightforward spectral clustering algorithm. This method is particularly effective when the

clusters are expected to be highly non-convex. We refer the reader to [28] for a more detailed

explanation of spectral clustering.

When applying a clustering method, selecting the number of clusters is a critical hyper-

parameter that must be determined in advance. Several techniques exist to help identify an

appropriate number of clusters. To obtain an initial estimate, we compare the predictions

from the elbow method [26], the gap statistic [20], and the gap∗ statistic [13]. While the

elbow method is heuristic in nature, both the gap statistic and the gap∗ statistic provide

a more formal approach grounded in statistical analysis. In the examples presented in this

section, we found that using two clusters offers a reasonable trade-off between achieving

meaningful data separation and maintaining comparability between the network and the

operator.

The clustering results for the operator as well as the network trained with different noise

levels and fixed Lipschitz parameter L = 0.999 are visualized in Figure 13, exemplified

on the balloon image from Figure 10. Each pixel for which saliency maps are calculated

and clustered is colored based on its cluster assignment. We visualize the results alongside
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Figure 14: Mean of the saliency maps of the operator and the network trained with Lipschitz
parameter L = 0.999 and noise level 0.01, 0.025, 0.05. The percentage of pixels on edges for
each cluster is indicated below each saliency map.

the ground truth image as well as its edges. In all subsequent plots, the cluster with the

highest number of pixels that align with the image edges is highlighted in green. The

edges are calculated using the Canny edge detection algorithm. We differentiate between

weak and strong edges, where strong edges are defined as those whose value exceeds 20% of

the maximum of the intermediate edge image generated during the Canny algorithm after

applying Sobel filtering and gradient magnitude thresholding.

Figure 13 shows that the operator’s saliency maps are primarily clustered into pixels

corresponding to strong edges and those associated with weak edges and smooth areas. In

contrast, the clustering for the network trained with δ = 0.01 indicates that the saliency

maps are very similar for most pixels, as the majority of pixels fall into the cluster visualized

in green. This behaviour is less pronounced for the network trained with δ = 0.025, where

the saliency maps are more distinctly clustered into pixels corresponding to edges and those

belonging to smoother regions of the image. The clustering of the network trained with

δ = 0.05 most closely resembles that of the operator, with weak edges and smooth areas

grouped into the same cluster.

To further investigate the clustering, we visualize the mean saliency maps for the indi-

vidual clusters of the operator and the network trained with L = 0.999 for different noise

levels in Figure 14. The operator’s mean saliency map of the orange cluster (comprising

pixels on weak edges and in smooth areas) is much more spread out compared to that of
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the green cluster (strong edges). This was to be expected as the strength of the nonlinear

diffusion depends on the gradient of the image, with stronger diffusion in areas with smaller

gradients.

When comparing the network’s saliency maps to those of the operator, it is particularly

striking that the spread of the orange cluster is significantly lower and decreases further

as the noise level increases. Since the orange cluster primarily includes pixels in smooth

regions and on weak edges, this leads to significantly less blurring in these areas and has a

regularizing effect, which is in line with our investigations of the local ill-posedness in the

previous section. Additionally, for small noise levels (δ = 0.01, 0.025), the dispersion of the

network’s saliency maps is quite similar across both clusters, which may explain the poor

clustering observed in Figure 13.

Furthermore, the network’s mean saliency maps exhibit a strong emphasis on the central

pixel, displaying significantly higher values compared to those of the operator. This is

particularly the case for the cluster containing pixels in smooth areas as well as high noise

levels. To counterbalance this and maintain the range of values in the blurred image, the

values of the pixels adjacent to the central pixel are negative.

Overall, the behaviour of the saliency maps leads to an overemphasis of edges and signif-

icantly reduced blurring in smooth regions, especially for high noise levels. This aligns with

the observations presented in Figure 10.

We also examined the clustering results of the network with varying Lipschitz parameters.

Our analysis confirms that smaller Lipschitz parameters significantly reduce the network’s

expressiveness, as previously discussed. As a result, the network’s ability to learn an effective

regularization from the data is limited for smaller Lipschitz parameters. For the sake of

completeness, the results can be found in Appendix B.

So far, the investigations have been based entirely on a single image from the test set,

which may lead to biased conclusions. This limitation arises because comparing clustering

results across different images, let alone the entire test set, is challenging. Pixel cluster

affiliations can vary significantly between different networks and images, making automated

comparison difficult. To obtain more reliable results, we decided to manually cluster the

pixels of each image in the test set to create comparable clusters. Based on the operator’s

behavior and the clustering results of the balloon image, we chose to divide the pixels of each

image into two groups: those belonging to smooth areas and those belonging to the edges.

We implement this manual clustering using Canny edge detection to extract the edges

of each image in the test set, thereby creating two distinct sets of pixels corresponding to

smooth regions and edges. To ensure a clear spatial separation between the two clusters, we

dilate the edge image using a 3×3 kernel, assigning pixels to the cluster representing smooth
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Figure 15: Mean of the saliency maps of the operator and the network trained with Lipschitz
parameter L = 0.999 and noise level 0.01, 0.025, 0.05. The clustering is done manually on
the test set according to edge pixels and smooth areas.

areas only if they are at least two pixels away from an edge. Moreover, the boundary region

of the image is excluded from clustering to ensure that the extracted and cropped saliency

maps consistently have the same size. For each image in the test set, we then sample 250

pixels equidistantly from each cluster, calculate the corresponding saliency map, and average

them within each cluster.

The resulting averaged saliency maps are depicted in Figure 15 for the operator as well as

the network trained with noise level δ = 0.01, 0.025, 0.05 and Lipschitz parameter L = 0.999.

The mean saliency maps exhibit a behavior remarkably similar to that observed in the

clustering of the balloon image. This similarity confirms the reliability and significance of

the balloon image’s clustering results, indicating that this behavior generalizes well to other

images.

5 Discussion and Outlook

This present work builds on the theoretical foundation of the iResNet reconstruction ap-

proach for solving inverse problems, previously introduced in [2, 3], by conducting extensive

numerical experiments on two real-world tasks. Our experiments demonstrate the competi-

tiveness of iResNets compared to state-of-the-art reconstruction methods. While the earlier

publications [2, 3] established criteria for rendering the iResNet reconstruction approach a

convergent regularization scheme, their efficacy in real-world, high-dimensional tasks had
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not yet been confirmed. To address this, we developed a large-scale iResNet architecture

and evaluated its performance on both a linear blurring problem and a nonlinear diffusion

problem.

Our results indicate that iResNets perform on par with leading image reconstruction

networks, such as U-Nets. However, unlike most state-of-the-art methods, iResNets pro-

vide verifiable regularization properties. Specifically, they ensure stability of the resulting

reconstruction scheme by controlling the hyperparameter L and offer empirically verifiable

convergence to the true solution as the noise level decreases. Additionally, the inherent in-

vertibility of iResNets enables exploration of the learned forward operator. This opens the

door to in-depth investigations of the nature of the learned regularization. However, these

advantages come at the price of significantly higher training times compared to state-of-the-

art methods.

In our numerical experiments, the best trade-off between interpretability of the learned

solution and performance was achieved by DiffNets, as introduced in [4], though these are

specifically tailored for diffusion problems. In contrast, our iResNet reconstruction approach

is applicable to a broader class of inverse problems and offers theoretical guarantees in addi-

tion to interpretability. Consequently, to validate the versatility of iResNets, future research

should explore their performance across a wider range of forward operators. Furthermore,

it is essential to investigate possibilities for reducing the training times of iResNets while

preserving their performance in order to increase their efficiency in practical applications.

In summary, this work provides numerical evidence supporting the iResNet regularization

scheme as an effective and interpretable learned reconstruction method with theoretical

guarantees. Consequently, iResNets offer a promising approach to solving complex real-

world inverse problems by bridging the gap between high-performance, data-driven methods

that often lack theoretical justification and classical methods with guarantees but inferior

performance.
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A Proof of Lemma 3.1

Proof. Since g ≡ 1, Shu fulfills the linear PDE u = Shu− h · div(∇(Shu)). It holds

∥(Id− Sh)u∥2 = ∥u∥2 − 2⟨Shu, u⟩+ ∥Shu∥2

= ∥u∥2 − 2⟨Shu, Shu− h · div(∇(Shu))⟩+ ∥Shu∥2

= ∥u∥2 + 2h⟨Shu, div(∇(Shu))⟩ − ∥Shu∥2 .

Due to the zero Dirichlet or zero Neumann boundary condition on Shu, we can go on with

∥(Id− Sh)u∥2 = ∥u∥2 − 2h⟨∇(Shu),∇(Shu)⟩ − ∥Shu∥2

≤ ∥u∥2 − ∥Shu∥2,

which completes the proof.

B Cluster comparison for different Lipschitz parame-

ters

Forward operator L = 0.95, δ = 0.05 L = 0.99, δ = 0.05 L = 0.999, δ = 0.05

Figure 16: Clustering of the saliency maps of the operator and the network trained with
noise level δ = 0.05 for different Lipschitz parameters. The first row visualizes the clustering
with the ground truth image and the second row with the corresponding edges (weak edges
are grey and strong edges are black).
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Figure 17: Mean of the saliency maps of the operator and the network trained with Lipschitz
parameters L = 0.95, 0.99, 0.999 and noise level 0.05. The percentage of pixels on edges for
each cluster is indicated below each saliency map.
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Learned convex regularizers for inverse problems. Preprint, arXiv:2008.02839, 2021.
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Abstract. In this work, we present our contribution to the Helsinki Deblur
Challenge 2021. The goal of the challenge was to recover images of sequences of

letters from progressively out-of-focus photographs. While the blur model was

unknown, a dataset of sharp and blurry images was provided. We propose to
tackle this problem in a two-step process: (i) the blur models are first extracted

and estimated from the provided dataset, and (ii) then incorporated into the
reconstruction process. Here, we present three different ways of integrating

the estimated model into learning-based methods: (i) an educated deep image

prior employing the estimated model in the loss function, (ii) a learned iterative
approach that directly employs the estimated model in the architecture and

(iii) a fully learned approach where we used the estimated model to simulate

additional training data. These three models are improved versions of our
original contributions to the challenge. We compare and benchmark them on

the released test set of the HDC2021.

1. Introduction. Image deblurring consists of the restoration of a degraded image
and can generally be formulated as

gδ = Af + η, (1)

where f is the original image, gδ is the blurred image, and A stands for a forward
operator, which models the blurring process. Additionally, η describes some noise
with noise level δ. In the Helsinki Deblur Challenge 2021 (HDC2021) [20], a dataset
was made available for participants to evaluate their deblurring methods. The
dataset consists of pairs of original and blurred images with 20 levels of progressively
increasing out-of-focus blur. However, the specific blurring kernel was not provided.
The problem is then known as blind image deblurring [16]. A common way of
tackling blind image deblurring is to first estimate the forward model and, in a
second step, incorporate this estimated model into a non-blind image deblurring
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method [26]. Usually, the forward model is assumed to be a linear convolution
operator given by a blurring kernel. The problem of non-blind image deblurring is
widely studied, and there exist many algorithms for recovering the original image
[8, 24]. Recently, deep learning-based methods have extensively been used for image
reconstruction (see [2] for an overview) and, in particular, for non-blind image
deblurring [19, 27, 30].

In this paper, we will present and compare three learning-based techniques with
different philosophies on how to address the blind deblurring problem. The three
methods incorporate a blur model initially estimated from the provided data pairs,
see Section 3. In Section 4.2, we cover our first method, an educated deep image
prior [4, 19] where the estimated blurring operator is used in the objective function.
Section 4.3 introduces the learned gradient descent approach [1], which directly
integrates the estimated blurring operator in the network architecture. The StepNet,
presented in Section 4.4, is a fully learned approach and uses the estimated blurring
operator only to simulate additional training data. We evaluate our approaches on
the test set of the HDC2021 in Section 5 and draw conclusions in Section 6.

2. Challenge overview. The HDC2021 dataset consists, in total, of 4000 pairs
of sharp and blurry images split into 20 levels of blur. The experimental setup and
data collection are described in [20]. Each pair is a photograph of the same image
taken with two identical cameras with different settings. The experimental setup
is illustrated in Figure 2(a). The target image consists of three lines of black text
on a white background. Two different font types are used: Times and Verdana, cf.
Figure 1. Overall, for each font type and each blurring level, there are 100 pairs
of images. The various blur levels become more and more severe as one camera
is shifted increasingly out-of-focus. In addition to this blurring, the out-of-focus
camera uses a higher ISO level (exposure index) [33] and an additional neutral
density filter. The filter reduces the amount of light reaching the photo sensor.
Normally, this means that a lower ISO value can be used when photographing.
In contrast, the higher ISO level used results in considerably more noise on the
blurred images. The images are further converted into grayscale images, aligned,
and cropped. A few example image pairs are shown in Figure 2(b). For the lower
blurring level 4, a human can still read the blurry text. For the last level, 19, this
is no longer possible.

The goal of the challenge is to build a reconstruction method to recover the origi-
nal image from the noisy and out-of-focus version. The quality of the reconstruction
is judged by the performance of the Tesseract OCR1 software [32]. In addition, the
methods should pass a sanity check consisting of blurred images without text, which
need to be deblurred consistently. To be more precise, the organizers of the chal-
lenge produced photographs of natural images under the same conditions. When
the reconstruction methods are applied to these natural images, a slight deblurring
effect should be visible, and the reconstruction method should not overfit to text
images.

3. Learning the forward operator. In many inverse problems, it has been ben-
eficial to introduce model-based knowledge into a learning-based reconstruction
method. In recent data challenges, like fastMRI [21, 22], LoDoPab-CT [23], or the
AAPM sparse view challenge [18], the best-performing methods always combined

1We use the Python wrapper https://pypi.org/project/pytesseract/0.3.7/
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Figure 1. Letters and digits of the fonts Times and Verdana.
Both are shown in the same font size.

(a) Experimental setup of the HDC 2021. (b) Data pairs for steps 4, 9, and 19.

Figure 2. The figure (a) is taken from [20], published under CC
BY 4.0 license (https://creativecommons.org/licenses/by/4.
0/deed.en).

model-based components with deep learning architectures. As the forward operator
is unknown, we use the training data to learn an approximation. In our initial sub-
mission to the HDC2021, we considered a disk-like point spread function (PSF) and
estimated the radius. In addition to the disk-like PSF, we use the implementation
of the team robust-and-stable2 from the TU Berlin, which is based on a fully-learned
kernel composed with a learned lens distortion model. We start by introducing the
disk-like blur model and then present the fully learned blur model with additional
distortion.

3.1. Disk blur. Out-of-focus blur can be modeled as the convolution of the image
with a disk-like PSF

ka(r) =

{
1/(πa2) if r ≤ a,

0 else
(2)

where r =
√
x2 + y2 is the distance from the center of the image [17]. This results in

a linear forward operator Āf = ka(r) ∗ f with ∗ denoting the convolution operator.
As this model is not differentiable w.r.t. the radius a, we used a line search over a
to fit this model to the training data for each blurring step.

2https://github.com/theophil-trippe/HDC_TUBerlin_version_1
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Figure 3. First row: Learned blurring kernels k for blurring steps
4, 9, 14, and 19. Second row: Visualization of the learned lens
distortion model D for blurring steps 4, 9, 14, and 19.

This model is used in the gradient step of the learned gradient descent model in
Section 4.3.

3.2. Combined blur and distortion model. A more flexible approximation can
be built by combining a linear blur operator with a lens distortion model. Instead
of restricting the kernel to be a disk, we parameterized the kernel k ∈ Rnk×nk

≥0 as

a nk × nk positive matrix. A general distortion model is given by [6]. It has been
reported that lens distortion can be modeled using a radial distortion model of the
form [7, 29]:

D(f(Xu)) = f(Xd) := f((1 +K1r
2 +K2r

4)Xu)

with Xu = (xu, yu) being the undistorted image coordinates, Xd = (xd, yd) the
distorted coordinates, r the radius, and K1,K2 the radial distortion coefficients.
The pixel values for the new image coordinates are calculated using bilinear inter-
polation. This combined blurring and distortion model can be fitted using gradient-
based methods for solving the minimization problem

min
k,K1,K2

1

N

N∑

i=1

∥D(fi ∗ k)− gδi ∥22,

where D describes the distortion process. In the rest of the manuscript, we will
denote this model by Âf = D(f ∗ k). The learned kernel and a visualization of the
learned distortion are shown in Figure 3. As one can see, this fully learned model
also gives rise to disk-like blurring kernels. Furthermore, the distortion gets more
severe as the blurring level increases.

The combined blur and distortion model is used to simulate additional training
data and is incorporated in the deep image prior in Section 4.2.

4. Reconstruction methods. In this section, we present the different reconstruc-
tion methods used in the challenge. We improved our methods with new ideas from
other submissions to the HDC2021. The changes to our initial submission will be
explained in the respective sections. In particular, we cover three methods:

• Educated deep image prior using a U-Net architecture3,

3https://github.com/mschmidt25/hdc2021_DIP
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• Learned gradient descent (LGD)4,
• A fully learned approach, which we call StepNet5.

In addition, we trained a simple U-Net [14], which serves as a baseline for our
methods.

To train the models, we used 90 images of each font (180 training images in
total) per blurring step. The remaining 10 images per font and blurring step were
used for validation and fine-tuning of the models. To overcome the small amount
of training data, we used 500 additional synthetic text images generated on-the-fly
with the fully learned blur and distortion model of Section 3.2. To train first on
the synthetic images and afterward on the real images turned out to be the best
strategy. For both training stages, we chose the best model parameters according
to the validation loss.

4.1. Baseline U-Net. As a baseline, we trained a neural network to map directly
from the blurry images to the clean ground truth images. For each blurring step,
a separate model with the same architecture is trained. This approach is purely
data-driven and does not use any knowledge about the forward operator (besides
the synthetic training images).

The model architecture consists of a U-Net [14] of depth 6 with skip connections
on all scales. The size of the convolution kernels ranges from 7 × 7 on the upper
scales to 3 × 3 on the lower scales. Batch normalization is performed after each
convolution. We adopt nearest neighbor interpolation as an upsampling strategy
because it results in non-smooth images, which is favorable for text images. As
activation functions, we use LeakyReLU [28] with a negative slope of 0.2 at all
intermediate layers and sigmoid in the last layer to enforce the output to be in the
interval [0, 1]. We train the network with a learning rate of 10−4 for 150 epochs on
the synthetic images and another 150 epochs on the real images. As optimizer we
use Adam [12] and a batch size of one due to limited memory. We use the mean
squared error (MSE) as loss function, on the reconstructions.

The described network architecture is similar to the one we used in our submission
of the educated deep image prior. One of the main differences is that we trained
the U-Net in our submission on downsampled images. In addition, the U-Net had
a depth of 5, a fixed kernel size of 3 × 3, and we used bilinear upsampling instead
of nearest neighbor upsampling. We found that our changes further improved the
reconstruction quality of the U-Net.

4.2. Educated Deep Image Prior. For the deep image prior (DIP) approach
[19], a neural network φθ is used for parametrizing the solution of an inverse prob-
lem. In contrast to other deep learning approaches, the network is only trained on
a single data point gδ without using any ground truth data. Therefore, we use the
loss function

1

2Σ
∥Âφθ(gδ)− gδ∥1 +

1

2Σ
∥Âφθ(gδ)− gδ∥22 + κ · TV(φθ(g

δ)) (3)

where Σ is the size of the images (height × width) and ∥ · ∥p is the ℓp-Norm.
For regularization we use anisotropic total variation [15, 5] with κ = 10−6. After

optimizing the weights of the network, f̂ = φθ(g
δ) is the deblurred image.

4https://github.com/alexdenker/hdc2021_LGD
5https://github.com/mschmidt25/hdc2021_StepNet
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There are several reasons which make DIP suitable for the deblurring challenge.
While other deep learning approaches may have problems with the small size of the
training dataset, DIP only needs a blurry measurement and a forward model of the
blurring process. This forward model should be as accurate as possible. That is
why we use the fully-learned blur with distortion Â from Section 3.2. An additional

advantage of DIP is that it results in a solution f̂ with small data discrepancy

∥Âf̂ − gδ∥22. (4)

Because of this so-called data consistency, DIP is a useful supplement for the base-
line U-Net (Section 4.1), which has no such guarantees.

Our strategy is to choose φθ as a U-Net with the same architecture as the base-
line. Following the idea of [4], we initialize φθ with the weights θ0 of the trained
network. The DIP approach in combination with an initialization with trained
weights is called educated deep image prior, EDIP for short. Before starting the
EDIP training, we check whether the data discrepancy is already smaller than some
empirically chosen tolerance value TOL > 0. The specific choice of the tolerance
value is explained in the following paragraph. If the data discrepancy is smaller
than the tolerance value, we assume that the baseline reconstruction φθ0(g

δ) is al-
ready good enough and we do not apply EDIP. If the data discrepancy is too high,
we start the EDIP training with a learning rate of 10−4 and Adam optimizer [12].
The number of training epochs is fixed depending on the blurring step in order to
achieve the best reconstruction quality and avoid overfitting (step 4: 2000, step 9:
4000, step 14 and 19: 5000). A visualization of this strategy can be seen in Figure 4.
We would like to remark, that the training strategy is the same as in our submission
of the educated deep image prior with adaptations in the number of training epochs
and tolerance values TOL of the data discrepancy.

load weights θ0
of pretrained
baseline U-Net

check discrepancy:
∥Âφθ0(gδ)− gδ∥22 < TOL?

return
f̂ = φθ0(g

δ)

EDIP training:
φθ0 ⇝ φθEDIP

return
f̂ = φθEDIP(g

δ)

true

false

Figure 4. Strategy of the educated DIP (EDIP).

We observed that EDIP is most of the time not able to improve the recon-
structions of the baseline U-Net on the text images but results in better looking
reconstructions on the sanity check images (as can be seen in tables 1 and 2). In
particular, EDIP is capable of overcoming the problem that reconstructions on the
sanity check images contain text-like structures. Therefore, the EDIP approach
can be understood as a means to improve the generalization ability of the U-Net
without significantly changing the reconstruction quality on the text images. Con-
sequently, we chose the tolerance TOL of the data discrepancy (above which the
EDIP is trained) to be slightly larger than the data discrepancy of the U-Net re-
constructions on the training text images. To be more precise, the tolerances for
the data discrepancies were set to 0.007 for step 4, 0.015 for step 9 and step 14 and
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0.035 for step 19. We would like to stress that this choice leads to a training of
EDIP on nearly all sanity check images of step 4, 9 and 14 except step 19. In step
19, we found that the data discrepancy of the U-Net reconstructions of the sanity
check images is lower than that of the text images, which is why EDIP is not used
in this step.

We found two possible explanations for the observation that EDIP is not able to
improve the reconstructions of the U-Net on the text images. First of all, EDIP is
not aware that the targets are text images as it is not trained using ground truth
images. This did not seem to be a limitation in the classical use case of natural
images, see [19]. However, the prior of the EDIP architecture may not be beneficial
for text images without relevant texture and with non-smooth edges. Secondly,
the forward operator is a learned model that may be inexact. As the forward
operator directly influences the loss function of EDIP this may introduce errors in
the reconstruction.

4.3. Learned Gradient Descent. The idea of learned iterative methods is to
unroll commonly used iterative algorithms for a fixed number of steps and replace
parts of the resulting scheme by neural networks [1]. We use a learned gradient
descent (LGD), which results in a learned reconstruction operator f (L) = Rθ(g

δ)
with

f (l) = Λθl(f
(l−1) − λlĀ∗(Āf (l−1) − gδ)) (5)

for l = 1, . . . , L and an initial value f (0) and the neural networks Λθl are parame-
trized as convolutional neural networks. The resulting reconstruction operator Rθ

with θ = [θ1, . . . , θL] is then trained end-to-end by minimizing the empirical mean-
squared error (MSE) i.e.

θ̂ ∈ argmin
θ

1

N

N∑

i=1

∥Rθ(g
δ
i )− fi∥22 . (6)

These unrolled iterative methods offer a simple way of integrating the model-based
knowledge into a learned reconstruction approach. Furthermore, learned iterative
approaches seem to be more data efficient in contrast to fully learned approaches,
i.e. one needs fewer data pairs for training [3]. In general, one would use the exact
forward operator A in the network (5). However, as the exact forward operator is
unknown, we use the disk blur operator Ā : X → X defined in Section 3.1. It would
be possible to use the fully learned forward operator from Section 3.2. However,
the LGD also needs access to the adjoint of the forward operator. We noticed some
artefacts in the adjoint of the fully learned forward operator and therefore opted
to use the model-based disk blur operator instead. Lunz et. al. [13] note that
these artefacts could be avoided if one also learned the adjoint operator. Using
an approximation of the forward operator in learned iterative schemes was first
explored by Hauptmann et al. [9]. In this context the neural networks Λθl can be
thought of as implicit corrections of the operator. Training such an iterative method
end-to-end as in (6) can be computationally very expensive. Especially for the high-
dimensional images in this challenge, the number of unrolling steps was limited by
the available GPU memory. To reduce the memory footprint we use a multi-scale
approach as proposed in [10]. We define a sequence of discretizations X1, . . . , X5

with dim(X1) < · · · < dim(X5) of the image space with X = X5 as the original
image. For each subsequent Xi the pixel resolution of the image is halved. We
set the discretizations to have a pixel resolution of 1460× 2360 for X5, 730× 1180
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91x147 1460x2360

Figure 5. An outline of the learned iterative architecture. After
each update on scale l the output is upsampled and passed to the
next scale.

for X4, 368 × 590 for X3, 182 × 295 for X2 and 91 × 147 for X1. We introduce
nearest-neighbour upsampling operators τl : Xl−1 → Xl and bilinear downsampling
operators πl : X → Xl. For each discretization Xl we use a downsampled forward
operator Āi : Xl → Xl. Another trick to improve the performance is to use a filtered
gradient for the update in (5) as the adjoint often produces smooth gradients [10].

In our work, we use the Wiener filter Ā†
l [24] instead of the adjoint Ā∗

l at scale l.

This results in a filtered gradient step with ∇Āl(f̃ (l), πl(gδ)) := Āl
†
(Ālf̃

(l)−πl(gδ)).
Integrating both the multi-scale approach and the filtered gradient we get a final
reconstruction operator fL = Rθ(g

δ) with

f̃ (l) = τl(f
(l−1))

f (l) = Λθl(f̃
(l) − λlĀl

†
(Ālf̃

(l) − πl(g
δ)))

(7)

for l = 1, . . . , L with a zero initialization f (0) = 0 ∈ X0 = X1 and L = 4. Note that
the initial τ1 = Id is defined as the identity. An outline of this network is illustrated
in Figure 5.

In contrast to our original submission we made two important changes. First,
we adopt the multi-scale architecture as proposed by Hauptmann et al. [10]. This
allowed us to increase the size of the subnetworks Λl. As a second step we use a
filtered gradient update using the Wiener filter instead of the adjoint of the blurring
operator. This further improved the performance of this approach.

Implementation details. As per the rules of the challenge, the same architecture,
training setup and hyperparameters were chosen for all blurring levels. We choose
the architecture such that we got an acceptable performance for the high blurring
levels. This results in a model with 14.5M parameters. We observed that much
smaller models would suffice for a good OCR accuracy for the smaller blurring
levels. An obvious extension would be to tune the architecture for each blurring
level. Each subnetwork Λθl uses the U-Net architecture [14] with varying depths.
The downsampling is performed using max pooling and the upsampling used nearest
neighbour interpolation. The size of the model limits the use of large batch sizes.
Therefore instead of batch normalization we use group normalization [25] after
each convolutional layer. As activation functions we use LeakyReLU [28] with a
negative slope of 0.2. We train the network using the Adam optimizer [12] with
a learning rate of 10−4 for 150 epochs on the synthetic images and for another
150 epochs on the real images. The step sizes λl in the gradient step are fixed to
[1.1, 0.8, 0.8, 0.7, 0.3]. It would be possible to also learn these step sizes together
with the weights of the networks. The Wiener deconvolution used at every scale
needs the signal-to-noise ratio as a hyperparameter. This was empirically chosen as
[5e-3, 6e-3, 4e-3, 5e-3, 4e-3].
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Sharp image Blurred image Without pretraining With pretraining

Figure 6. Reconstruction of the LGD for one image from the
sanity check. The model without pretraining on Urban100 shows
how the model extrapolated text in the reconstruction.

For the LGD we used an additional pretraining strategy using a hand-crafted
variation of the Urban100 dataset [11]. To make this dataset more similar to the
HDC2021 data, we first extracted 200 × 300 px patches6 and used K-means with
2 cluster centers to create a segmentation map for each patch. The values of the
binary segmentation maps were transformed to match the black text and the white
background of the HDC2021 images respectively. In a next step this image was up-
sampled using a nearest neighbour method to equal the size of the original training
images of HDC2021. The combined blur and distortion model of Section 3.2 was
then used to simulate blurry measurements. This pretraining was used to steer the
LGD model towards a better generalization performance. Without this pretraining
the model repeatedly extrapolated text on the highest blurring levels when applied
to blurry non-text images as can be seen in Figure 6.

4.4. StepNet. For the StepNet approach, we follow the idea to split the deblurring
problem into separate steps. The network consists of a concatenation of 20 U-Nets
– one for each blur level. The task of a single U-Net is to reduce the level of its
respective input by one. We use the first l+1 U-Nets to produce the reconstruction
for an input image at blur level l ∈ {0, 1, . . . , 19}

f̃ = StepNetθ
(
gδ, l

)
:= U-Netθ[l] ◦U-Netθ[l−1] ◦ · · · ◦U-Netθ[0]

(
gδ
)
. (8)

Here, the U-Nets differ in their parameterization θ[·], but not in their architecture.
The StepNet can thus be understood as an unrolling via the blur stages.

For training, we start with images from the first blur level. This includes pre-
training on simulated data. Following the definition in (8), only the first U-Net is
involved in this case. The parameters of the network θ[0] are trained for 150 epochs.
Afterward, we freeze the weights and continue training with the second level and
U-Net. In general, training at blur level l is defined as a minimization problem

θ̂[l] ∈ argmin
θ[l]

1

N

N∑

i=1

∥∥StepNetθ
(
gδi , l

)
− fi

∥∥2
2
.

The Adam optimizer [12] in combination wit a learning rate of 10−4 is used for the
minimization.

Freezing all other parameters, apart from θ[l], provides two advantages. The first
one is that we can apply the exact same StepNet to blurry images of all possible lev-
els. In addition, the effort required for training is reduced. Training all parameters
of the network in each step would require too much computing resources and mem-
ory, especially in high levels. Further reduction of the computational requirements

6This patch size was chosen to match the resolution of the e-ink display used in the HDC2021.
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is achieved through 4× downsampling of the input images by average pooling. In
the end, the output of the StepNet is upscaled to the original image size by nearest
neighbor interpolation.

Besides downsampling of the input, we also apply an undistort operation, which
reverses the learned distortion model introduced in Section 3.2. The goal is to
reduce the influence of elements outside the field of view in the ground truth image,
which are present in the blurry image due to distortion.

5. Results. We focus on the blur levels 4, 9, 14, and 19 for the analysis of the
results. These levels were also used by the challenge organizers to show visual
results of the competing approaches. The code for the models and all experiments
is available7.

5.1. Evaluation Procedures. A total of four different metrics are used for the
assessment. The optical character recognition (OCR) accuracy provides inside into
the text reconstruction capability of each method. In addition, we use an adapted
OCR score called OCRI, which we explain in the next paragraph. These scores
are calculated on the test set of the text images with the help of the Tesseract
software and the Levenshtein distance. Furthermore, we are interested in the overall
reconstruction quality on the sanity set. Here, we use the PSNR (9) and SSIM (10)
metrics. Both metrics are also calculated for the reconstructed text images as a
reference.

OCR and OCRI. We follow the procedure and provided code of the HDC2021
challenge to evaluate the performance of the text reconstruction task [20, Sec. 5.1].
The Tesseract software is used to extract text from the reconstructed image. Next,
the Levenshtein distance between the extracted text Tf̃ of the prediction f̃ and the
provided text TGT of the ground truth image f is determined. The Levenshtein
distance is defined as

lev[TGT ,Tf̃ ] :=





|TGT |, |Tf̃ | = 0

|Tf̃ |, |TGT | = 0

lev[tail(TGT ), tail(Tf̃ )], TGT [0] = Tf̃ [0]

1 + min





lev[tail(TGT ),Tf̃ ]

lev[TGT , tail(Tf̃ )]

lev[tail(TGT ), tail(Tf̃ )]

, otherwise

.

Here, |·| is the length of the string, [0] refers to the first character, and tail truncates
the first character from the string. The Levenshtein distance is solely calculated for
the middle line of the text. The final OCR score in the range [0, 100] is calculated by
the FuzzyWuzzy python library8. If less than 3 lines were detected by the Tesseract
software during the reconstruction, an OCR score of 0.0 is assigned to the image.

During our experiments, we observed that the Tesseract software was unable to
perfectly extract the text even for the in-focus images. Therefore, we calculated a
second score, called OCRI. Here, we replace the ground truth text TGT by the text
Tf which is extracted from the ground truth in-focus image f . Again, we use the
Levenshtein distance to assign a score to the deblurred image.

7https://github.com/alexdenker/Hybrid-deep-learning-approaches-to-the-HDC2021-challenge
8https://pypi.org/project/fuzzywuzzy/



HYBRID DEEP LEARNING APPROACHES TO THE HDC2021 CHALLENGE 11

Peak Signal-to-Noise Ratio. The PSNR expresses the ratio between the maximum
possible image intensity and the distorting noise, measured by the mean squared
error (MSE),

PSNR
(
f̃ , f

)
:= 10 log10


 L2

MSE
(
f̃ , f

)


 . (9)

Here f is the ground truth image, and f̃ is the reconstruction. Higher PSNR
values are an indication of a better reconstruction. We choose L = 1, which is the
maximum range of the normalized grayscale values.

Structural Similarity. Based on assumptions about human visual perception, SSIM
compares the overall image structure of ground truth and reconstruction. Results lie
in the range [0, 1], with higher values being better. The SSIM is computed through
a sliding window at M locations

SSIM
(
f̃ , f

)
:=

1

M

M∑

j=1

(2µ̃jµj + C1) (2Σj + C2)(
µ̃2
j + µ2

j + C1

) (
σ̃2
j + σ2

j + C2

) , (10)

where µ̃j and µj are the average pixel intensities, σ̃j and σj are the variances, and

Σj is the covariance of f̃ and f at the j-th local window. Constants C1 = (K1L)
2

and C2 = (K2L)
2 stabilize the division. Like Wang et al. [31], we choose K1 = 0.01

and K2 = 0.03. The window size is 7× 7 and L = 1.

5.2. Text Dataset. In this section, we evaluate our models on the test set of the
HDC2021 and compare the performance with the official challenge results9. The
full results are given in Table 1 and qualitative examples are shown in Figure 7. The
corresponding inference times are provided in Table 3. Here, we assessed the OCR
performance for the two fonts Times and Verdana separately. The test set includes
the same number of images for both fonts, so the full OCR accuracy for the test
set can be calculated by taking the mean of the results for Times and Verdana. In
almost all cases the OCR performance is better for Verdana than for Times. One
possible explanation could be, that Verdana consists of clearer characters without
serifs. This can be seen in Figure 1, where letters and numbers of the two font types
are shown with the same font size.

The results in Table 1 show that the performance of all proposed methods is
more or less similar for blurring levels 4 and 9, while LGD outperforms all other
methods for blurring levels 14 and 19. Moreover, comparing the OCR scores of the
methods presented in this paper with those we submitted, it can be seen that the
EDIP and StepNet versions result in similar accuracies, whereas the modifications
for the LGD approach lead to better accuraccies. To be more precise, the LGD
submission to the challenge got OCR scores of 43.88% for step 14 and 0.68% for
step 19 compared to 78.80% for step 14 and 52.68% for step 19 with our adapted
LGD version. However the differences between the methods could also be attributed
to the size of the model. Whereas the EDIP uses a small U-Net architecture with
0.7M parameters the LGD method uses 14.5M parameters. For blur level l, the
StepNet consist of l + 1 U-Nets with 4.1M parameters, i.e., it has (l + 1) · 4.1M
parameters.

Examples of reconstructions of the different models for the fonts Times and
Verdana are depicted in Figure 7. It can be seen that all methods are able to extract

9https://www.fips.fi/HDCresults.php
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text even if it is impossible for a human to read the text. This is particularly striking
at blurring level 19, where the proposed models are still able to extract characters.
Moreover, the reconstructions for the font Verdana look better than those for Times
with LGD resulting in the best looking images. These observations are in line with
the OCR and OCRI scores described in the previous paragraph.

Times Level 4 Level 9 Level 14 Level 19

OCR

U-Net 91.00± 21.42 81.15± 15.43 38.55± 13.62 19.30± 11.45
LGD 85.05± 21.72 81.80± 14.43 71.15± 17.54 42.95± 17.66
EDIP 91.00± 21.42 81.15± 15.43 38.55± 13.62 19.30± 11.45
StepNet 87.50± 8.96 65.00± 14.43 51.30± 13.27 24.15± 13.20

OCRI

U-Net 92.00± 21.70 98.00± 4.00 68.75± 13.69 21.40± 12.34
LGD 96.75± 3.96 94.50± 6.69 85.95± 16.80 63.65± 14.98
EDIP 92.00± 21.70 98.00± 4.00 68.75± 13.69 21.40± 12.34
StepNet 97.25± 5.12 94.75± 6.61 84.15± 14.31 23.85± 10.37

Verdana Level 4 Level 9 Level 14 Level 19

OCR

U-Net 91.25± 21.90 96.75± 4.55 68.65± 13.31 20.90± 11.34
LGD 96.00± 5.62 94.25± 5.76 86.45± 15.15 62.40± 15.22
EDIP 91.25± 21.90 96.75± 4.55 68.65± 13.31 20.90± 11.34
StepNet 96.00± 6.44 94.00± 7.35 80.15± 16.09 22.95± 9.89

OCRI

U-Net 92.20± 21.70 98.00± 4.00 68.75± 13.69 21.40± 12.34
LGD 96.75± 3.96 94.50± 6.69 85.95± 16.80 63.65± 14.98
EDIP 92.20± 21.70 98.00± 4.00 68.75± 13.69 21.40± 12.34
StepNet 97.25± 5.12 94.75± 6.61 84.15± 14.31 23.85± 10.37

Combined Level 4 Level 9 Level 14 Level 19

OCR

U-Net 91.13± 21.66 88.95± 13.79 53.60± 20.08 20.10± 11.42
LGD 90.53± 16.78 88.03± 12.63 78.80± 18.09 52.68± 19.14
EDIP 91.13± 21.66 88.95± 13.79 53.60± 20.08 20.10± 11.42
StepNet 91.75± 8.88 79.50± 18.48 65.73± 20.63 23.55± 11.68

OCRI

U-Net 92.50± 21.68 90.28± 13.20 54.90± 19.31 20.58± 12.02
LGD 92.20± 16.72 88.43± 13.43 80.48± 18.11 53.75± 19.26
EDIP 92.50± 21.68 90.28± 13.20 54.90± 19.31 20.58± 12.02
StepNet 94.20± 7.62 80.65± 18.03 68.53± 19.99 23.95± 11.81

Table 1. Results for U-Net, LGD, EDIP and StepNet on the test
set for the two font types on four selected blur levels. The OCR
accuracy is calculated w.r.t. the middle row of the reconstruction.
We report the mean and standard deviation calculated over the 20
test images in each set.

5.3. Sanity Check. In this section, we evaluate the PSNR and SSIM of our models
on the sanity set of 16 images of the HDC2021. Additionally, we show reconstruc-
tions for different blurring levels in Figure 8.

The PSNR and SSIM results for the different blurring levels are depicted in
Table 2. It can be seen that the EDIP outperforms the StepNet and the LGD
on the sanity images for all blurring levels except for blurring level 19 where the
LGD performs best. This shows that the training strategy of the EDIP explained
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Reconstructions for Times
Blurring level 4

Blurring level 9

Blurring level 14

Blurring level 19

Sharp image Blurred image EDIP LGD StepNet

Reconstructions for Verdana
Blurring level 4

Blurring level 9

Blurring level 14

Blurring level 19

Sharp image Blurred image EDIP LGD StepNet

Figure 7. Four examples with different blur levels from the Times
and Verdana test set. From left to right: Ground truth, blurry
measurement, U-Net/EDIP, LGD, and StepNet reconstruction.
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Blurring level 4

Blurring level 9

Blurring level 14

Blurring level 19

Sharp image Blurred image EDIP LGD StepNet

Figure 8. Reconstructions on one sanity test image. From left
to right: Ground truth, blurry measurement, U-Net/EDIP, LGD,
and StepNet reconstruction.

in Section 4.2 is able to improve the generalization ability of the U-Net without
degrading the results on the text images. Consequently, applying EDIP in cases
where the data discrepancy does not fall below a specified tolerance can make a
network trained on a limited dataset more robust. However, it is necessary to choose
the weight for the TV term in the EDIP loss. For the purpose of the challenge, this
weight was chosen to achieve a good performance on the text images. Therefore,
the weight may not be optimal for the natural images in the sanity set. For blurring
levels 4 and 14 the EPID reconstruction contains the typical TV staircase artifacts,
cf. Figure 8.

Reconstructions for one sanity test image are shown in Figure 8. It is immediately
apparent that all methods are not perfectly suited for natural-looking images. This
is not surprising as they are trained for the recognition of letters. Nevertheless,
the reconstructions do not contain any characters. Comparing the images of the
different methods, it can be seen that they are of similar quality in the first two
blurring levels, while LGD results in better looking reconstructions especially in
blurring level 19. This is consistent with the PSNR and SSIM values described in
the last paragraph.

6. Conclusion. In this work, we reported on our submission to the HDC2021
and evaluated some modifications. In particular we demonstrated three ways in
which the blind deblurring problem can be addressed. These methods rely on the
availability of suitable training data to estimate the forward model. Our methods
highlight three different philosophies of how such a learned forward operator can be
used in a reconstruction method. To overcome the limited size of the training data,
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Level 4
Text Sanity

PSNR SSIM PSNR SSIM
Blurred 16.29± 0.40 0.403± 0.008 13.42± 0.98 0.188± 0.073
U-Net 25.19± 2.10 0.630± 0.013 11.41± 2.56 0.320± 0.124
LGD 23.12± 0.38 0.605± 0.004 13.44± 1.25 0.311± 0.101
EDIP 25.19± 2.10 0.630± 0.013 14.21± 1.27 0.324± 0.115
StepNet 23.40± 0.88 0.605± 0.007 13.91± 1.78 0.310± 0.116

Level 9
Text Sanity

PSNR SSIM PSNR SSIM
Blurred 14.38± 0.42 0.442± 0.008 11.98± 0.76 0.193± 0.077
U-Net 22.18± 0.83 0.607± 0.006 12.40± 1.03 0.307± 0.098
LGD 23.82± 0.88 0.612± 0.006 12.63± 1.01 0.299± 0.102
EDIP 22.18± 0.83 0.607± 0.006 13.23± 0.92 0.312± 0.107
StepNet 22.13± 0.71 0.596± 0.005 12.51± 1.04 0.262± 0.099

Level 14
Text Sanity

PSNR SSIM PSNR SSIM
Blurred 13.97± 0.37 0.458± 0.009 11.15± 0.80 0.193± 0.078
U-Net 19.50± 0.57 0.597± 0.007 11.43± 1.01 0.290± 0.094
LGD 21.72± 0.57 0.609± 0.006 11.72± 0.90 0.296± 0.097
EDIP 19.50± 0.57 0.597± 0.007 12.21± 0.70 0.300± 0.097
StepNet 20.41± 0.43 0.600± 0.007 11.66± 1.10 0.256± 0.099

Level 19
Text Sanity

PSNR SSIM PSNR SSIM
Blurred 12.48± 0.33 0.548± 0.008 8.65± 1.17 0.228± 0.103
U-Net 17.61± 0.46 0.583± 0.007 9.83± 1.82 0.264± 0.105
LGD 19.06± 0.68 0.599± 0.007 10.39± 1.47 0.279± 0.103
EDIP 17.61± 0.46 0.583± 0.007 9.83± 1.82 0.264± 0.105
StepNet 17.35± 0.44 0.582± 0.007 10.06± 1.40 0.248± 0.105

Table 2. Mean and standard deviation for the U-Net, LGD, EDIP
and StepNet on the test set (text images of both fonts) and on the
the sanity images. The PSNR and SSIM are calculated using a
data range of 1.

we simulated additional data pairs using the estimated forward model. It can be
seen that relatively simple methods, like the baseline U-Net, already perform quite
well with a pretraining on high quality synthetic data. However, for high blurring
levels it seems to be important to introduce more knowledge into the neural network.
As an example, the LGD performs best on the highest blurring level 19.

Improving the generalization ability of a neural network is an important open
problem. In this work, we showed that the EDIP is able to enhance the reconstruc-
tion quality of a network on previously unseen image types without requiring an
additional training dataset. In general, for the performance of our methods, it was
necessary to introduce additional knowledge into the network architecture or the
training setup, either by simulating appropriate training data or by incorporating
an estimated forward model directly in the architecture.
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Level 4 Level 9 Level 14 Level 19
U-Net 2.345± 0.950 s
LGD 0.198± 0.017 s
EDIP 199.5± 2.5min 385.3± 12.6min 476.0± 5.7min 476.0± 5.7min

StepNet 0.075± 0.045s 0.151± 0.042s 0.437± 0.061s 0.869± 0.12s

Table 3. Inference time of the different methods. For EDIP the
inference time is provided in the case that the data error of the
initial U-Net was higher than the threshold. All computations were
done on a GeForce RTX 3090 with 24GB memory.
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Abstract. The Finnish Inverse Problems Society organized the Helsinki To-

mography Challenge (HTC) in 2022 to reconstruct an image with limited-angle

measurements. We participated in this challenge and developed two methods:
an Edge Inpainting method and a Learned Primal-Dual (LPD) network. The

Edge Inpainting method involves multiple stages, including classical recon-

struction using Perona-Malik, detection of visible edges, inpainting invisible
edges using a U-Net, and final segmentation using a U-Net. The LPD ap-

proach adapts the classical LPD by using large U-Nets in the primal update

and replacing the adjoint with the filtered back projection (FBP). Since the
challenge only provided five samples, we generated synthetic data to train the

networks. The Edge Inpainting Method performed well for viewing ranges

above 70 degrees, while the LPD approach performed well across all viewing
ranges and ranked second overall in the challenge.

1. Introduction. The task in computed tomography reconstruction is to recover
an image x from measurements y given by the Radon transform [14]

y(ϕ, s) = A[x](ϕ, s) =

∫

L(ϕ,s)

x(t) dt. (1)

Each measurement results from an integral over a straight line L parameterized by
a distance s ∈ R and an angle ϕ ∈ [0, π].

When we sample s and ϕ sparsely, this becomes a challenging inverse problem.
The goal of the HTC 2022 was to recover the shapes of 2D phantoms from limited-
angle sinogram data. In limited-angle CT, the goal is to recover x while only having
measurements for angles from some small interval [ϕmin, ϕmax] – we denote these
measurements by A|[ϕmin,ϕmax][x].

The challenge has two phases. In the first phase, the organizers provided a
dataset of five 512 × 512 pixels phantoms with full-angle sinograms, filtered back
projection reconstructions, segmentation masks, and information about the mea-
surement geometry. The target phantoms are homogeneous discs with differently
shaped holes. We used this data set to develop this paper’s algorithms. The second
phase consisted of evaluating the algorithms; thus, no changes to the submitted
methods were allowed at this stage of the challenge. The evaluation was split into
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Source

Detector

Figure 1. 2D Fan-beam geometry used for data collection.
Adapted from https://fips.fi/HTC2022.php.

7 levels, starting with a view range of 90◦ in level 1 and decreasing by 10◦ per level
down to 30◦ in level 7. The performance of the models is evaluated based on their
ability to segment the reconstructed phantoms into material and air accurately.

We tackle this challenge with two different deep learning approaches: an adapted
Learned Primal-Dual (LPD) method in Section 3.1 and an Edge Inpainting ap-
proach in Section 3.2. We trained both models using synthetic data with simulated
measurements; see Section 2. The results are discussed in Section 4.

2. Dataset. A significant difficulty of the challenge was the need for more data.
The challenge organizers provided a small dataset of only 5 pairs of full view sino-
grams and phantoms [12]. Hence we built methods to generate many pairs of
synthetic phantoms and simulated measurements similar to the five provided. We
then used this synthetic data to train our two data-driven approaches.

2.1. Modeling of the forward operator. The challenge data was collected us-
ing the University of Helsinki’s in-house cone-beam computed tomography scanner.
The measurement parameters, e.g., the distance of the source to origin DSO, dis-
tance of detector to origin DD0, number of detector pixels, and pixel size, were
provided by the organizers. Using the number of detector pixels and the pixel size,
one can calculate the length of the detector LD. The data given was already back-
ground and flat-field corrected, and the attenuation data has already undergone log
transformation. We used the provided measurement parameters to define a 2D fan
beam ray transform operator in ODL [1] using the ASTRA [17] backend. We used
this approximated forward operator to generate the new measurements from the
phantom created in Section 2.2 and in the LPD model in Section 3.1.

2.2. Data generation. All of our synthetic phantoms share the following features.
They have binary values, which correspond to air and material, respectively. The
material always has the same homogeneous density. The discs have a circular shape
and fixed size. The center of the disc is positioned randomly around the center of
the squared images.
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We used four different methods to generate four different types of holes inside
these discs (see Figure 2), most of them inspired by the given data.

The first method generates discs with a random number (up to 15) of circular
holes. The sizes and locations of the holes are also random, and the holes are not
allowed to intersect each other or the boundary.

The second method works analogously but uses randomly drawn polygons instead
of circles as holes.

The third method creates holes by drawing a grid of lines inside the disc. At
first, a big circular hole, almost the size of the disc itself, is set into the middle of
the disc. Then, a grid of randomly drawn lines separates the big hole into smaller
holes. The lines of the grid are not perfectly straight, and the orientation of the
grid is random. Thus, the shapes of the resulting holes vary significantly.

The fourth method uses a Gaussian mixture model to generate holes. At first,
several Gaussian functions, which define a mixture model, are initialized randomly
inside the disc. Then, we use a sublevel set defined by the 70% percentile of the
pixel values of these combined functions to define where material is present; the
remaining parts are the holes.

These methods are fast enough to be used during training to generate training
data on-the-fly.

Figure 2. Examples of generated synthetic data samples. The
different methods for data generation from left to right: circular
holes, polygons, grid of lines, and Gaussian mixture.

3. Methods. We develop two deep learning approaches: an adapted version of the
LPD method [3] trained directly for segmentation and a sequentially trained Edge
Inpainting model. In the following exposition, we drop the subscript [ϕmin, ϕmax]
and denote the limited-angle Radon transform by A.

3.1. Learned Primal-Dual. In deep learning, selecting an appropriate architec-
ture is crucial to any successful approach. In particular, traditional iterative algo-
rithms, e.g., proximal gradient descent and primal-dual hybrid gradient [8], inspire
the architecture class for learned iterative methods for inverse problems. One cre-
ates these powerful architectures by replacing parts of the iterative algorithms with
neural networks – typically the proximal mappings. One can then train these ar-
chitectures end-to-end, e.g., in a supervised manner [6]. We want to point out that
while these learned iterative methods are motivated by classical iterative methods,
they do not possess the same theoretical guarantees. A powerful example of a
learned iterative method is the Learned Primal-Dual (LPD) proposed by Adler et
al. [3]. As our first method, we build upon the LPD architecture by incorporating
some common modifications [9].
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The LPD swaps the proximal mappings in the dual and primal update with con-
volutional neural networks Fθk : Y Ndual×Y ×Y → Y Ndual and Gθk : XNprimal×X →
XNprimal . The networks in each unrolling step k have separate weights. We imple-
mented the dual network Fθk as small residual convolutional networks and the pri-
mal networks Gθk as U-Nets. The use of U-Nets was motivated by the effectiveness
of multi-scale architectures when working with images. Further, instead of using
the adjoint A∗ in the primal update, we use the filtered back projection (FBP) A†

using the Hann filter and a frequency cutoff of 0.75. This choice is motivated by
Hauptmann et al. [9], where the authors show that this change can increase perfor-
mance. The application of a filtered gradient is reminiscent of the Newton method,
which has a higher convergence speed than traditional gradient descent. In the chal-
lenge, the performance was judged not by the reconstruction but by a downstream
segmentation task. We address this by placing a U-Net Tθ : XNprimal → X after
the last iteration of the LPD. In addition, we normalized the sinograms such that
the model is invariant to intensity shifts. Similar to [2], we trained the resulting
model directly for the segmentation task by minimizing the binary cross-entropy
between the output and the provided segmentation masks. The pseudocode for the
full model is given in Algorithm 1. We used K = 4 unrolling steps and memory
channels Nprimal = 4 and Ndual = 2. In total, the network has 2.4M parameters.
The full model is denoted by RΘ with Θ = (θ, θ1, . . . , θK) denoting all trainable
parameters. The U-Nets used in the primal update and in the segmentation step
consist of 4 scales with skip connection on all scales. The specific details of the
implementation are given in Table 1.

Applying the forward operator and FBP during each unrolling step produces
significant memory requirements during training, limiting our batch size to 6. To
address this small batch size, we used group normalization [18] instead of batch
normalization.

As with most deep learning models, most of the computational effort is spent in
training the network. Once trained, a forward pass through the network requires
only 4 evaluations of the forward operator and 5 evaluations of the FBP, which has
a similar computational complexity as the adjoint. Thus, the evaluation of the LPD
is cheaper than classical iterative methods which may require hundreds of iterations
to create a suitable solution.

The evaluation phase of the HTC 2022 was split into 7 levels with decreasing
angular ranges. Using the same training configuration, we trained one LPD model
instance for each level. The specific angular subset [ϕa, ϕb] was not fixed and only
became known during testing. To robustify the model, we shift the sinograms by
−ϕa to the angular range [0◦, ϕb − ϕa], input this shifted sinogram to the LPD
network, and rotate the output by ϕa to get the initial orientation back. Using this
pre- and postprocessing, we can restrict the training of the LPD model to sinograms
with a 0◦ starting angle.

We submitted three variants of this modified LPD model: trained only on the
synthetic data1, additional finetuning on the 5 challenge phantoms2 and an addi-
tional equivariance constraint in the evaluation process3.

For the first variant, we trained the network instances for 41 666 steps with a
batch size of 6 on the synthetic phantoms with simulated measurements having

1https://github.com/alexdenker/htc2022_LPD2
2https://github.com/alexdenker/htc2022_LPD
3https://github.com/alexdenker/htc2022_LPD3
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Algorithm 1 Modified Learned Primal-Dual

x0 ∈ XNprimal , h0 ∈ Y Ndual

for k = 1, . . . ,K do

hk = Fθk(hk−1, Ax
(1)
k−1, y

δ)

xk = Gθk(xk−1, A
†h(0)
k )

end for
x̂ = Tθ(xK)

Table 1. The implementation details of the primal, dual, and
segmentation network in the LPD model.

Primal U-Net Gθk Segmentation U-Net Tθ
scales 4 4
channels 16, 32, 64, 64 16, 32, 64, 128
skip channels 16, 32, 32 8,8,8
activation function Leaky ReLU Leaky ReLU
downsampling max pooling max pooling
upsampling nearest neighbor nearest neighbor
kernel size 3 3

Dual CNN Fθk
number of layers 4
channels 64
activation function LeakyReLU
kernel size 3

1% relative additive Gaussian noise. In total 250 000 synthetic data samples were
generated. We used the Adam optimizer [11] with a batch size of 6 and an initial
learning rate of 1× 10−4. We used a step learning rate scheduler which decayed the
learning rate by 25% every 4166 gradient updates.

In the second variant, we additionally fine-tuned for 2000 steps on random an-
gular subsets of the 5 challenge phantoms. Again, we used the Adam optimizer
with a fixed learning rate of 5× 10−6 and a batch size of 5. In the last variant,
we experimented with an equivariance constraint during evaluation. This variant
used the same weights as the fine-tuned LPD. We first compute the reconstruc-
tion given the limited-angle sinogram, i.e., x̂ = RΘ(y). We fix a number of angles
0 ≤ α1, . . . , αT ≤ π, rotate the output of the network and simulate new measure-
ments yαi = ATαi x̂ with Tαi denoting a rotation matrix by the angle αi. We then
compute reconstructions from these rotated measurements x̂αi

= T−αi
RΘ(yαi

). We
then compute the final reconstruction as the mean over the rotations:

x =
1

T

T∑

i=1

x̂αi
. (2)

In our implementation, we choose T = 50. We observed a slight performance
increase on our synthetic data and the 5 challenge phantoms.

3.2. Edge inpainting. We base our second approach on the work by Bubba et. al.
[7], which also deals with limited angle computed tomography. Their reconstruction
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method aims to be consistent with the measurement data and reliable in that they
use neural networks only for subtasks that model-based methods fail to solve. They
use Quinto’s fundamental visibility analysis of limited angle CT [15] to realize these
objectives. The visibility analysis shows that the reliable recovery of a generalized
function f ’s edges is only possible if the edges are tangent to a line contained in
the measured data. An edge not tangent to any measured line is impossible to
reconstruct.

Following [7], we call – according to the visibility analysis – recoverable edges
‘visible’ and all others ‘invisible.’ Note that we know the measurement geometry
prior to reconstruction, and it fully determines edges’ (in-)visibility.

In order to calculate the visible and invisible edges of a generalized function
f , one can use the wavefront set of f , which is the set of positions of the singular
support of f and their unsmooth directions. We refer the reader to [10] for a detailed
discussion. Bubba et. al. [7] use the shearlet transform to determine the wavefront
set and, in particular, the (in-)visible singularities of a function. To be more precise,
they apply a variational approach with an `1-penalty in the shearlet domain to solve
a sparse regularization problem and determine the visible singularities of the target
function. They then use the visible coefficients of the shearlet transform as input
to a neural network, which they train to estimate the invisible shearlet coefficients.
In the final step, they combine the visible and invisible coefficients predicted by the
classical method and the neural network, respectively, to obtain a reconstruction of
the target via the inverse shearlet transform.

The setting in [7] is rather general as the algorithm can reconstruct any objective
function f . In contrast, the objective functions in the challenge have a specific
structure, and the goal was not to reconstruct the objective function but to create
a segmentation of it. Therefore, we adapted the approach of [7] to the setting in
the challenge. The main difference is that we do not use the shearlet transform but
estimate the wavefront set using gradients. Similarly, we start with a variational
approach using Perona-Malik and a W-shaped functional for regularization. We
then use the resulting reconstruction to estimate the visible edges by calculating
the gradient field and discarding all gradients corresponding to invisible edges. The
visible edges are used as input to a neural network with the task of inpainting the
invisible edges. In the final step of our pipeline, we use a second neural network to
create a segmentation mask from this inpainted output.

Once the full pipeline is trained, both the inpainting and segmentation network
can be evaluated quite fast. The main computational complexity lies in obtaining
the visible edges via a variational regularization as this is done with an iterative
algorithm with many evaluations of the forward operator and its adjoint. Thus, the
complexity of our method is comparable to classical reconstruction methods.

In the following paragraphs, we discuss the pipeline’s individual steps; see also
Figure 3. The complete reconstruction scheme and all the weights of the networks
are available on GitHub4.

Classical reconstruction. First, we normalize the input sinogram data to make the
reconstruction method invariant to changes in the intensity of the phantoms. We
then define our variational approach via

min
x∈X

1

2
‖Ax− y‖2 +R(x), (3)

4https://github.com/arndt-c/htc2022_edge_inpainting
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1 2 3

Figure 3. Visualization of the steps of the Edge Inpainting
method: (1) variational reconstruction and extraction of visible
edges, (2) inpainting of invisible edges, (3) segmentation.

where the penalty term R is a combination of the Perona-Malik function [5]

G(s) =
T 2

2

(
1− exp

(
− s

2

T 2

))
for s = ‖∇xi,j‖2 (4)

and a W-shaped functional

W (s) =
(s− a)2(s− b)2

(b− a)3
for s = xi,j . (5)

Here, a and b are the air and material intensity levels, respectively, estimated ac-
cording to the 5 given challenge phantoms.

We use Perona-Malik to support the subsequent edge extraction, as it sharpens
the edges and smooth areas between them. The binary nature of the phantoms moti-
vates the W-shaped functional. The choiceR(x) =

∑
i,j 2000G(‖∇xi,j‖2) +W (xi,j)

is a suitable weighting of the penalty terms.
We solve the minimization problem (3) via alternating gradient steps w.r.t. the

data discrepancy (the gradient is A∗(Ax− y)) and the regularization terms imple-
mented using automatic differentiation in PyTorch. We also include optimization
steps w.r.t. the values a and b to make the penalty term adaptive. Due to the high
computational cost of the Radon transformation and its adjoint, we restrict the
number of iteration steps to 40.

Alternatively, one could use the filtered back projection (FBP) instead of the
variational method for the reconstruction. Despite its computational complexity,
we chose the variational approach over the FBP as it demonstrates significantly
higher robustness to noise (see Figure 4). Similar observations were also made in
[7].

Estimation of visible edges. Since the overall goal is a segmented image, we only
need information about the edges of the reconstruction. To obtain these, we com-
pute the gradient field of the reconstruction from the previous step using a convo-
lution with the Laplace filter. We then use a threshold to reject gradients with a
small magnitude; all remaining gradients correspond to edges in the image. That
is why Perona-Malik regularization, which prefers sharp edges and smooth areas in
between, is beneficial.

The gradients also contain information about the corresponding edges’ orien-
tation (an angle between zero and 360◦). If the angular range of the CT mea-
surements is [ϕmin, ϕmax], all gradients whose orientation is in one of the intervals
[ϕmin − 90, ϕmax − 90] or [ϕmin + 90, ϕmax + 90] correspond to visible edges in a
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Figure 4. Here we compare the extracted visible edges via the
variational method (middle) and the FBP (right). Both methods
use the noisy sinogram on the left with 3% relative additive Gauss-
ian noise.

parallel beam geometry. For the given fan beam geometry, we shrink the intervals
of visible angles symmetrically by 10◦ to avoid unwanted invisible edges.

Inpainting of invisible edges with a U-Net. After extracting visible edges, we use
a neural network to predict the invisible edges. The network’s inputs consist of
binary images, where we encode the visible edges via ‘1’s. The output is also a
binary image with visible and invisible edges encoded by ‘1’s. The network consists
of a U-Net [16] of depth 6 with skip connections on all scales. For an overview
of the training and architecture parameters, see Table 2. As discussed above, we
apply group normalization after each convolution due to the small batch size. The
activation function is set to LeakyReLU with a negative slope of 0.2 at all layers
except the last one, where we use sigmoid to enforce the output to be in the interval
[0, 1]. In the decoder part of the U-Net, we use nearest neighbor interpolation to
upsample the input of the respective blocks as it produces non-smooth images,
which is beneficial given that the output should be binary.

We train the network for 16 000 steps using the Adam optimizer [11] with a
learning rate of 2× 10−5 and a batch size of 4 due to memory constraints. In total
we used 64 000 samples for training. As in the LPD case, we train separate instances
for each angular range, resulting in 7 different sets of network weights. We chose the
weighted binary cross entropy (BCE) as our loss function with a weight on edges,
i.e., areas with value ‘1’, cf. [19].

The training data consists of on-the-fly generated synthetic phantoms, see Section
2.2, where we calculate visible and invisible edges (input and target, respectively)
using the approach described in the preceding step. We want to stress that we
do not use the variational approach to calculate the visible edges as it would slow
down the training tremendously. We expect the overall results to be slightly better
when training with visible edges extracted from reconstructions of the variational
approach. However, this would require a fixed dataset, which we do not consider
beneficial in this setting.

Further, we want to point out that the network can alter the extracted visible
edges; hence our method, unlike the one presented in [7], does not provide any
real guarantees. We opted for this approach as it simplifies the pipeline, and we
observed that the inpainting network did not change the input edges significantly.

Segmentation with a U-Net. The last step of our pipeline consists of segmenting the
output of the edge inpainting network. For this, we use the same U-Net architecture
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Table 2. Details of the training setup and U-Net’s architecture
for the inpainting and segmentation task.

Kernel size: 9×9 Channels: 16, 32, 64, 128, 256, 256
Scales: 6 Skip channels: 16, 32, 64, 128, 256
Parameters: ≈ 34M Downsampling: max pooling
Optimizer: Adam Upsampling: nearest neighbor
Batch size: 4 Activation: LeakyReLU
Loss function: weighted BCE Overall gradient steps: 16000

as for the inpainting network and train the network using the synthetic data of Sec-
tion 2.2 with the same training parameters except for the learning rate of 1× 10−5

(see Table 2). The segmentation task does not depend on the angular range of the
sinogram. However, we train the network for each angular range separately as we
use the output of the previous edge inpainting network as input, which depends on
the angular range.

4. Results. To evaluate our models, we show results on the test data of the chal-
lenge and out-of-distribution data. We detail in which cases the models show a
good performance and the characteristics of the reconstruction errors – occurring,
especially in more difficult levels. An overview of all results (scores and reconstruc-
tions from all methods of all participating teams) can be found on the challenge
website5.

4.1. Challenge data. The test set of the challenge consists of three different phan-
toms per angular range. The complexity of the phantoms increases as the viewing
angle decreases, i.e., the phantoms contain more holes of different shapes (see Fig-
ures 7 - 10). For evaluating the different methods, the challenge organizers use the
Matthews correlation coefficient (MCC) between ground truth segmentation masks
It and segmentation calculated from the reconstruction Ir. One defines the MCC
as

S =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP denote the number of true positives, TN the number of true negatives,
FP the number of false positives and FN the number of false negatives. The score
S is a number between −1 and 1 where 1 indicates a perfect match and −1 indicates
a total mismatch between Ir and It. For comparing the performance of the different
methods on each level, the organizers use the overall score defined as the sum of
the scores of the reconstructions on three different phantoms A,B,C for each level,
i.e.,

SN = SAN + SBN + SCN with N ∈ {1, . . . , 7}.
For more details on the challenge’s scoring system, we refer the reader to the chal-
lenge website6.

Our best performing method on the test data was the fine-tuning LPD method
without equivariance postprocessing. We depict the overall scores of the best LPD
variant, the Edge Inpainting method, and the method of the challenge’s winning
team (provided by the challenge organizers) in Figure 5. LPD results in the best

5https://www.fips.fi/HTCresults.php
6https://www.fips.fi/HTC2022.php
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scores up to level 5 and is merely slightly worse on the last two levels than the
winning team’s method. The Edge Inpainting method scores well on the first three
levels, but the performance drops significantly from level 4 onwards.
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winning team
LPD
Edge Inpainting

Figure 5. The official overall scores of our main methods in
the challenge on the different levels in comparison with the
method of the winning team. Accessed at https://www.fips.

fi/HTCresults.php.

Figure 6 shows the overall scores of the different variants of the LPD method.
One can observe that LPD’s fine-tuning on the provided training data significantly
boosted performance. Focusing on the fine-tuned model with equivariance post-
processing, one can see that the post-processing step decreases the model’s perfor-
mance. With the equivariance modification, we aimed to increase the robustness of
the model. However, as this modification only affects the inference of the model, it
was not clear at the beginning whether this post-processing step is beneficial.
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Figure 6. The official scores of the different variants of the LPD
in the challenge.

We depict the reconstructions of the Edge Inpainting method and the fine-tuned
LPD method for the three different phantoms of level 1, 3, 5, and 7 in Figures 7,
8, 9 and 10. Focusing on the reconstructions of the Edge Inpainting method, one
can observe that in levels 1 and 3, the method can approximate most of the holes
correctly. Nevertheless, some reconstruction errors are visible; still, they have a
relatively small impact on the score. In levels 5 and 7, the inpainting method
cannot correctly reconstruct the holes and shapes, which is consistent with the
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Edge Inpainting LPD Ground Truth

Figure 7. Reconstructions of the Edge Inpainting method and of
LPD (fine-tuned variant) in level 1 (90◦).

Edge Inpainting LPD Ground Truth

Figure 8. Reconstructions of the Edge Inpainting method and of
LPD (fine-tuned variant) in level 3 (70◦).
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Edge Inpainting LPD Ground Truth

Figure 9. Reconstructions of the Edge Inpainting method and of
LPD (fine-tuned variant) in level 5 (50◦).

Edge Inpainting LPD Ground Truth

Figure 10. Reconstructions of the Edge Inpainting method and
of LPD (fine-tuned variant) in level 7 (30◦).
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Edge Inpainting LPD
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Figure 11. Visualization of the reconstruction errors for the Edge
Inpainting method and LPD (fine-tuned variant) in level 1 (90◦),
3 (70◦), 5 (50◦), 7 (30◦): white = true positive (material), black
= true negative (air), red = false positive, blue = false negative.
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results of Figure 5. Moreover, we can see that at all levels, the reconstructed outer
discs are often not perfectly circular. With a suitable fine-tuning of the method,
this error should, in principle, be avoidable since the data contains only circular
disks. However, as the challenge’s organizers did not officially specify the disk, we
opted for a less restrictive method.

In contrast to the Edge Inpainting method, the fine-tuned LPD method results
in nearly perfect reconstructions up to level 5 with very few visible reconstruc-
tion errors. In level 7, LPD can roughly estimate the holes’ location but can no
longer correctly reconstruct the shapes and the borders between them. Moreover,
comparing the reconstructions of the different shapes, one can observe that LPD
tends to fail to reconstruct non-convex holes. This is probably due to the under-
representation of similar holes in the synthetic data.

We further illustrate the results and observations of the previous sections in Fig-
ures 11 and 12. The figure exemplifies our methods’ true positives, true negatives,
false positives, and false negatives at levels 1, 3, 5, and 7, respectively.

(A) score: 0.89855 (B) score: 0.84846 (C) score: 0.88876

Figure 12. Visualization of the reconstruction errors for the LPD
variants (A) fine-tuned, (B) pre-trained, (C) fine-tuned and equiv-
ariance) in level 6 (40◦): white = true positive (material), black =
true negative (air), red = false positive, blue = false negative.

4.2. Out-of-distribution data. To test the generalization ability of the networks,
we created three different out-of-distribution phantoms depicted in Figure 13.

We visualize the reconstructions, and the results of the intermediate steps of
the Edge Inpainting method on level 1 (90◦) in Figure 14. One can observe that

Figure 13. Example phantoms, which look significantly differ-
ent from the challenge phantoms for testing the models on out-of-
distribution data.
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Figure 14. Reconstructions and intermediate steps of the Edge
Inpainting method on out-of-distribution data with angular range
of 90◦.

the visible edges are at least visually correctly estimated, and the Edge Inpainting
method does not significantly alter them. However, the Edge Inpainting method
fails to connect the different shapes correctly and draws a circle in every image. This
makes image segmentation exceptionally difficult, which is visible in the segmented
reconstructions. These results show that the networks unsurprisingly completely
adapted to the training data. Moreover, the combination of two networks might
not be beneficial in this setting as the errors made by the edge inpainting network
seem to get amplified in the segmentation network resulting in a loss of visible
edges. Therefore, joint training of the full segmentation pipeline might lead to
better results.

The LPD methods result in nearly perfect reconstructions at level 1 (90◦) but
deteriorate at level 2 (80◦), which is why we only show the reconstructions at
level 2 in Figure 15. The LPD methods can approximate the phantom’s outer
shape but attempt to form circles in regions with invisible edges. In addition, the
network trained on synthetic data only (not fine-tuned) leads to the best-looking
reconstructions except for the stars in the third phantom. Thus, there seems to be
a trade-off between a high fitting on the challenge data and a good generalization
ability.

5. Discussion. The results and observations from Section 4 motivate some ideas
for further improvements of the methods.

Two phenomenons can explain many reconstruction errors of the Edge Inpainting
method. First, the inpainting network connects the wrong visible edges or fails to
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LPD pre-trained on syn-
thetic data

LPD with additional fine-
tuning on challenge data

LPD with additional equi-
variant postprocessing

Figure 15. Reconstructions of the LPD variants on out-of-
distribution data with angular range of 80◦.

connect them. Second, the segmentation network labels the wrong areas as holes.
One possibility to avoid this is to provide the networks with information about the
orientation of the edges [4].

Besides, the sequential training of the two U-Nets in the Edge Inpainting method
might not be beneficial. Instead, one could test an end-to-end approach or joint
training of both networks; see, e.g., [2]. One could also test the approach of [7]
(explained at the beginning of Section 3.2) on the challenge data and compare it
with our simplified method.

For the LPD approach, the results show that this method performs very well.
Nevertheless, it does not provide any reconstruction guarantees, which can be in
real-world scenarios. One could combine the LPD method and the concept of visible
edges to overcome this shortcoming. One could estimate the uncertainty as a first
step by comparing the edges in the LPD reconstruction with the visible edges in a
classical reconstruction.

If the visible edges between the classical reconstruction and the LPD approach do
not align, one could correct the LPD reconstruction using the correct visible edges
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of the classical reconstruction. For further insights into reconstruction guarantees
in Deep Learning, we refer the reader to [13].

6. Conclusion. We show that it is possible to apply data-driven methods in a
small data setting using a suitable chosen simulated dataset. However, the choice
of simulated data is crucial, and this is only possible if a reliable approximation of
the data distribution is possible in advance. Further, the generalization to new data
is still an open question, as could be observed in the OOD experiment in Section 4.2.
Combining model-based reconstruction with data-driven components is a promising
research direction, as it ensures consistency with measured data while still providing
great flexibility.
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